

XV Conference of the Italian Association of Transport Economics and Logistics (SIET) "Transport, Spatial Organization and Sustainable Economic Development" Venice - September 18-20, 2013

Ennio Forte, Università degli Studi di Napoli Federico II Luigi D'Ambra, Università degli Studi di Napoli Federico II Lucio Siviero, Università degli Studi di Catania

EFFICIENCY AND PERFORMANCE OF THE INTERPORTS IN ITALY AND LINKAGES WITH THE ITALIAN PORTS

The Italian interport model

The Italian intermodal road-rail transport planning policy has been based on a unique national "interport model" promoted through the legislation for implementing interports that are beneficiaries of public contributions (Law 240/90).

The paper presents an analysis of the technical efficiency of Italian interports which have received public contributions in accordance with Law 240/90 and subsequent modifications, for the years 2006 and 2010. The estimates for technical efficiency obtained by the stochastic frontier production function have been used for creating a performance indicator to investigate the performance determinants of interports mainly with respect to linkages with sea ports.

The transport terminal efficiency

Port performances are generally evaluated by measuring single factors of production, or by comparing actual productivity with an optimal productivity over a specific period (Cullinane, Song, Wang, 2005, Tongzon, Heng, 2005).

In the last few years the policies more frequently pursued for the purposes of measuring efficiency and the productivity of the port terminals have been the Data Envelopment Analysis (DEA) and the Stochastic Frontier Analysis (SFA) which in certain cases have been applied by considering the connections with the terrestrial inland terminals among the variables for evaluating technical efficiency (Tongzon, 2001).

The measurement of the efficiency

Frontier represents the 'best possible practice' in the industry or sample studied. Once the frontier is estimated, efficiency then can be evaluated against the frontier.

Efficiency comprises technical efficiency, scale efficiency and allocative efficiency.

'Technical efficiency' is defined as the relative production between the observed output and the best possible output.

'Scale efficiency' is defined as the relative scale between the observed firm size and the optimal firm size.

'Allocative efficiency' is a measure of the benefit or utility derived from a proposed or actual choice in the distribution or apportionment of resources (Wang, Cullinane and Song, 2005).

The two stage approach: SFA and Performance Composite Index

This study has adopted a statistical analysis model of cross-section data relatives to the years 2006 and 2010 of a group of Italian interports of the parametric (econometric) probabilistic frontier-type production function (SFA) by considering a *y* output obtained by combining a group of *x* inputs.

In the second stage the utilized method to construct an composite indicator of performance (IPI) based on the production stochastic frontier, allow to study probabilistic estimates about several causes of the total productivity and the relative inefficiency.

The causal linkages between the IPI and its determinants

Moreover a linear regression (OLS) is carried out by considering the rail traffic of the Italian interports as dependent variable and the determinants included in the performance index IPI as independent variables, in order to identify and estimate potential causal links between the latter and rail traffic.

In the literature this technique has been applied in the sector of the port infrastructures for the elaboration of similar performance indices (Gosh, De, 2000, Tongzon, Heng, 2005). Finally a time-interval comparison has been carried out between the indices of efficiency and of performance of the Italian interports obtained during the two periods considered.

The stochastic frontier model

A production function is defined as the schedule of the maximum amount of output that can be produced from a specified set of inputs, given the existing technology. The problem is to determine empirically the maximum potential of a production unit. This means estimating the production possibilities frontier. The ratio of the observed to the maximum potential output obtainable from a particular set of inputs is the technical efficiency (TE) of a production unit.

Considering a composed error model, independently proposed by Aigner, Lovell and Schmidt (1977), the Stochastic Frontier Analysis (SFA):

$$\ln Y_i = \beta_o + \sum_{k=1}^K \beta_{ki} \ln X_{ik} + V_i - U_i$$

were:

 $V_i \approx iidN(0, \sigma_v^2)$

 U_i is a non-negative variable accounting for **inefficiency**

 V_i and U_i are distributed independently of each other and of the regressor

The technical efficiency TE

The technical efficiency, *TE* of the *ith* unit is determined by:

$$\ln TE_{i} = \ln Y_{i} - \ln Y_{i}^{*} = \ln(\frac{Y_{i}}{Y_{i}^{*}}) = -U_{i}$$

 $TE_i = \exp(-U_i)$

The technical efficiency of a unit lies between zero and one and will be inversely related to the inefficiency effect. Usually is assumed to be distributed non-negative half normal or other distribution as exponential but another singletailed distribution could be assumed (Greene, 2003).

The parameters of stochastic frontier function are estimated by the Maximum Likelihood method (ML). Prediction of individual technical efficiencies involves the unobservable technical inefficiency effects *Ui*. The best predictor for *Ui* is the conditional expectation of *Ui*, given the value of : $\varepsilon_i = V_i - U_i$

PCA for the determination the IPI Index

PCA permits reducing the number of variables describing the profile of the units and reproducing the characteristics of the latter through a restricted number of new variables (principal components).

The principle components, uncorrelated amongst themselves for their construction, are linear combinations of the original variables; PCA in fact is a linear-type method which reconstructs hyper planes as optimal subspaces. A linear combination, in that it results from a considered sum of the original variables, it proves to be a useful model for constructing composite indicators, capable of summarizing complex phenomena.

The IPI Index

$$IPI = \sum_{k=1}^{n} W_{K} X_{ik}$$

- IPI represents the index of interport performance;

-Wk the weight of the k-th indicator from the F1 of the PCA;

-*Xik* is the standardized value for taking into account the different units of measurements of the *k*-*th* indicator for the *i*-*th* port.

(Tongzon, Heng, 2005; Gosh, De, 2005).

Significance of the variables and differences over time

The verification of a relationship of linear dependence between the two variables Rail traffic and IPI allows us to consider the rail traffic as a valid proxy of port performance.

Therefore the assess the statistical significance of the variables selected for the composite indicator, a linear regression OLS has been carried out by considering the total rail traffic handled by the interports as independent variable.

The performance indices of the Italian interports relating to two years a comparison has been made between a comparison index between the performance of the interports (IPI $_{t,t+1}^{i}$) between period *t* and period *t*+1.

A Malmquist Productivity Index $(MPI_{t,t+1}^{i})$ has also been elaborated by considering the efficiency estimates between two periods *t* and *t+1* based on the frontiers at time *t* and at time *t+1* (benchmark technology years).

MLE Normal/Half-normal Estimations of the Production Function Rail Traffic Model

Dependent Variable: lnY_i (natural	Value	SD	7	Pr > z	
logarithm of the total rail traffic 2006)	value	ue SD		11 > L	
Constant	0.954	2.822	0.34	0.735	
In RAILWAY TERMINAL	1.017	0.278	3.66	0.000	
In TOTAL LOGISTIC OPERATORS	0.483	0.158	3.04	0.002	
Observations	15				
σ^2	1.615(*)	1.185			
$\lambda = \sigma_u / \sigma_v$	2.813(*)	1.007			
$\gamma = \sigma_u^2 / \sigma^2 \text{ with } \sigma^2 = \sigma_u^2 + \sigma_v^2$	0.886				
Log likelihood	-18.1384(***)				
Dependent Variable: lnY_i (natural	Value	SD	7	$\mathbf{Dr} > 7 $	
logarithm of the total rail traffic 2010)	value	50	L		
Constant	4.4296	0.0001	32771.95	0.000	
ln RAILWAY TERMINAL	0.7291	0.0000	65312.09	0.000	
<i>ln RAILWAY TERMINAL ln TOTAL LOGISTIC OPERATORS</i>	0.7291 0.4448	0.0000 7.80e-06	65312.09 57034.36	$0.000 \\ 0.000$	
In RAILWAY TERMINAL In TOTAL LOGISTIC OPERATORS Observations	0.7291 0.4448 14	0.0000 7.80e-06	65312.09 57034.36	0.000 0.000	
$\frac{\ln RAILWAY TERMINAL}{\ln TOTAL LOGISTIC OPERATORS}$ $\frac{\sigma^{2}}{\sigma^{2}}$	0.7291 0.4448 14 2.4198(***)	0.0000 7.80e-06 0.9146	65312.09 57034.36	0.000 0.000	
$ln RAILWAY TERMINAL$ $ln TOTAL LOGISTIC OPERATORS$ $Observations$ σ^{2} $\lambda = \sigma_{u} / \sigma_{v}$	0.7291 0.4448 14 2.4198(***) 4.38e+07(***)	0.0000 7.80e-06 0.9146 0.2939	65312.09 57034.36	0.000 0.000	
$ln RAILWAY TERMINAL$ $ln TOTAL LOGISTIC OPERATORS$ $Observations$ σ^{2} $\lambda = \sigma_{u} / \sigma_{v}$ $\gamma = \sigma_{u}^{2} / \sigma^{2} with \ \sigma^{2} = \sigma_{u}^{2} + \sigma_{v}^{2}$	0.7291 0.4448 14 2.4198(***) 4.38e+07(***) 1.0000	0.0000 7.80e-06 0.9146 0.2939	65312.09 57034.36	0.000	

*** significance level at 1%; ** significance level at 5%; * significance level at 10%.

Technical Efficiency level Ranking 2006 and 2010

Interport	TE	Interport	ТЕ	
NOVARA	0.8247	VERONA	1.0000	
VENICE	0.7181	RIVALTA SCRIVIA	1.0000	
PARMA	0.7166	MARCIANISE	1.0000	
BARI	0.6612	NOVARA	0.9951	
VERONA	0.6552	PARMA	0.6855	
MARCIANISE	0.6080	VENICE	0.5704	
CERVIGNANO	0.5403	PADUA	0.3047	
TURIN	0.5136	TURIN	0.2955	
PADUA	0.3615	CERVIGNANO	0.2583	
BOLOGNA	0.3604	NOLA	0.1583	
PRATO	0.2756	PRATO	0.1431	
RIVALTA SCRIVIA	0.2631	BOLOGNA	0.1294	
NOLA	0.2343	BARI	0.0610	
LEGHORN	0.1427	VADO LIGURE	0.0458	
VADO LIGURE	0.1177	Mean Efficiency	0.4748	
Mean Efficiency	0.4662	The Leghorn interport does not present rail traffic for 2010		

Estimated Technical Efficiency and Rail Traffic – 2010

Interport Performance Index Ranking 2006 and 2010

	Interport		IPI
1	NOVARA		8.316
2	VERONA		8.094
3	BOLOGNA		7.150
4	TURIN		7.109
5	MARCIANISE		6.706
6	PADUA		6.331
7	NOLA		6.273
8	PARMA		5.261
9	PRATO		4.858
10	RIVALTA SCRIVIA		4.310
11	VENICE		4.165
12	LEGHORN		3.981
13	CERVIGNANO		3.463
14	BARI		3.183
15	VADO LIGURE		3.000
		Mean	5.480
		SD	1.782

	Interport		IPI
1	NOVARA		8.181
2	VERONA		8.105
3	MARCIANISE		6.845
4	BOLOGNA		6.726
5	TURIN		6.703
6	NOLA		6.062
7	PADUA		6.061
8	PARMA		5.037
9	RIVALTA SCRIVIA		4.795
10	PRATO		4.622
11	VENICE		3.911
12	LEGHORN		3.752
13	CERVIGNANO		3.121
14	VADO LIGURE		2.866
15	BARI		2.594
		Mean	5.292
		SD	1.829

Interport Performance Index - 2010

Determinants of Interport Performance OLS – 2006 and 2010

variables	Variables Coefficients		t	Pr > t
Constant	9.636**	2.794	3.449	0.010
Ln(VAR1)	1.002**	0.305	3.287	0.013
Ln(VAR2)	0.301	0.629	0.479	0.646
Ln(VAR3)	0.989***	0.278	3.552	0.009
Ln(VAR4)	2.139***	0.554	3.865	0.006
Ln(VAR5)	0.162	0.308	0.525	0.615
Ln(VAR6)	-0.269	1.363	-0.197	0.849
Ln(VAR7)	-0.160	1.394	-0.115	0.911
R^2	0.946			
F-test	17.60***			0.000
Durbin-Watson	2.0336			
White test				0.378
Breusch-Pagan test				0.972
Variables	Coefficients	SD	t	Pr > t
<i>Variables</i> Constant	Coefficients 8.923**	<i>SD</i> 2.788	<i>t</i> 3.201	Pr > /t/ 0.01
Variables Constant Ln(VAR1)	<i>Coefficients</i> 8.923** 0.817***	<i>SD</i> 2.788 0.149	<i>t</i> 3.201 5.480	<i>Pr > /t/</i> 0.01 0.00
Variables Constant Ln(VAR1) Ln(VAR2)	<i>Coefficients</i> 8.923** 0.817*** 0.339	<i>SD</i> 2.788 0.149 0.597	t 3.201 5.480 0.568	$ \begin{array}{r} Pr > t \\ 0.01 \\ 0.00 \\ 0.59 \end{array} $
Variables Constant Ln(VAR1) Ln(VAR2) Ln(VAR3)	Coefficients 8.923** 0.817*** 0.339 0.801**	<i>SD</i> 2.788 0.149 0.597 0.240	<i>t</i> 3.201 5.480 0.568 3.330	$ \begin{array}{r} Pr > t \\ 0.01 \\ 0.00 \\ 0.59 \\ 0.01 \end{array} $
Variables Constant Ln(VAR1) Ln(VAR2) Ln(VAR3) Ln(VAR4)	Coefficients 8.923** 0.817*** 0.339 0.801** 1.714**	<i>SD</i> 2.788 0.149 0.597 0.240 0.482	t 3.201 5.480 0.568 3.330 3.557	$\begin{array}{c c} Pr > /t/ \\ 0.01 \\ 0.00 \\ 0.59 \\ 0.01 \\ 0.01 \end{array}$
Variables Constant Ln(VAR1) Ln(VAR2) Ln(VAR3) Ln(VAR4) Ln(VAR5)	Coefficients 8.923** 0.817*** 0.339 0.801** 1.714** 0.146	<i>SD</i> 2.788 0.149 0.597 0.240 0.482 0.237	t 3.201 5.480 0.568 3.330 3.557 0.617	$\begin{array}{c c} Pr > /t/ \\ 0.01 \\ 0.00 \\ 0.59 \\ 0.01 \\ 0.01 \\ 0.56 \end{array}$
Variables Constant Ln(VAR1) Ln(VAR2) Ln(VAR3) Ln(VAR4) Ln(VAR5) Ln(VAR6)	Coefficients 8.923** 0.817*** 0.339 0.801** 1.714** 0.146 -0.184	<i>SD</i> 2.788 0.149 0.597 0.240 0.482 0.237 1.526	t 3.201 5.480 0.568 3.330 3.557 0.617 0.120	$\begin{array}{c c} Pr > /t/ \\ 0.01 \\ 0.00 \\ 0.59 \\ 0.01 \\ 0.01 \\ 0.56 \\ 0.90 \end{array}$
Variables Constant Ln(VAR1) Ln(VAR2) Ln(VAR3) Ln(VAR4) Ln(VAR5) Ln(VAR6) Ln(VAR7)	Coefficients 8.923** 0.817*** 0.339 0.801** 1.714** 0.146 -0.184 0.079	<i>SD</i> 2.788 0.149 0.597 0.240 0.482 0.237 1.526 1.599	t 3.201 5.480 0.568 3.330 3.557 0.617 0.120 0.050	$\begin{array}{c c} Pr > /t/ \\ 0.01 \\ 0.00 \\ 0.59 \\ 0.01 \\ 0.01 \\ 0.56 \\ 0.90 \\ 0.96 \end{array}$
Variables Constant Ln(VAR1) Ln(VAR2) Ln(VAR3) Ln(VAR4) Ln(VAR5) Ln(VAR6) Ln(VAR7) R ²	Coefficients 8.923** 0.817*** 0.339 0.801** 1.714** 0.146 -0.184 0.079 0.966	<i>SD</i> 2.788 0.149 0.597 0.240 0.482 0.237 1.526 1.599	t 3.201 5.480 0.568 3.330 3.557 0.617 0.120 0.050	$\begin{array}{c c} Pr > t \\ 0.01 \\ 0.00 \\ 0.59 \\ 0.01 \\ 0.01 \\ 0.56 \\ 0.90 \\ 0.96 \end{array}$
VariablesConstant $Ln(VAR1)$ $Ln(VAR2)$ $Ln(VAR3)$ $Ln(VAR4)$ $Ln(VAR5)$ $Ln(VAR6)$ $Ln(VAR7)$ R^2 F -test	Coefficients 8.923** 0.817*** 0.339 0.801** 1.714** 0.146 -0.184 0.079 0.966 24.729***	<i>SD</i> 2.788 0.149 0.597 0.240 0.482 0.237 1.526 1.599	t 3.201 5.480 0.568 3.330 3.557 0.617 0.120 0.050	$\begin{array}{c c} Pr > /t/ \\ 0.01 \\ 0.00 \\ 0.59 \\ 0.01 \\ 0.01 \\ 0.56 \\ 0.90 \\ 0.96 \\ \end{array}$
Variables Constant Ln(VAR1) Ln(VAR2) Ln(VAR3) Ln(VAR4) Ln(VAR5) Ln(VAR6) Ln(VAR6) Ln(VAR7) R ² F-test Durbin-Watson	Coefficients 8.923** 0.817*** 0.339 0.801** 1.714** 0.146 -0.184 0.079 0.966 24.729***	<i>SD</i> 2.788 0.149 0.597 0.240 0.482 0.237 1.526 1.599	t 3.201 5.480 0.568 3.330 3.557 0.617 0.120 0.050	$\begin{array}{c c} Pr > /t/ \\ 0.01 \\ 0.00 \\ 0.59 \\ 0.01 \\ 0.01 \\ 0.56 \\ 0.90 \\ 0.96 \\ \hline \end{array}$
VariablesConstant $Ln(VAR1)$ $Ln(VAR2)$ $Ln(VAR3)$ $Ln(VAR3)$ $Ln(VAR4)$ $Ln(VAR5)$ $Ln(VAR6)$ $Ln(VAR7)$ R^2 F-testDurbin-WatsonWhite test	Coefficients 8.923** 0.817*** 0.339 0.801** 1.714** 0.146 -0.184 0.079 0.966 24.729*** 1.3171	<i>SD</i> 2.788 0.149 0.597 0.240 0.482 0.237 1.526 1.599	t 3.201 5.480 0.568 3.330 3.557 0.617 0.120 0.050	$\begin{array}{c c} Pr > /t/ \\ 0.01' \\ 0.00' \\ 0.59 \\ 0.01' \\ 0.01' \\ 0.56' \\ 0.90' \\ 0.90' \\ 0.90' \\ 0.90' \\ 0.90' \\ 0.373' \\ \end{array}$

Y = ln Rail Traffic.

*** significance level at 1%; ** significance level at 5%; * significance level at 10%.

Rankings of Interports by Indices 2006-2010

	Interport	$IPI_{t,t+1}^{i}$		Interport	$MPI^{i}_{t,t+1}$
1	RIVALTA SCRIVIA	1.113	1	RIVALTA SCRIVIA	4.070
2	MARCIANISE	1.021	2	MARCIANISE	2.125
3	VERONA	1.001	3	VERONA	1.020
4	NOVARA	0.984	4	VENICE	1.000
5	NOLA	0.966	5	VADO LIGURE	0.961
6	PARMA	0.957	6	PRATO	0.952
7	PADUA	0.957	7	PARMA	0.870
8	VADO LIGURE	0.955	8	PADUA	0.715
9	PRATO	0.951	9	NOLA	0.713
10	TURIN	0.943	10	TURIN	0.660
11	LEGHORN	0.943	11	NOVARA	0.536
12	BOLOGNA	0.941	12	CERVIGNANO	0.532
13	VENICE	0.939	13	BOLOGNA	0.461
14	CERVIGNANO	0.901	14	BARI	0.111
15	BARI	0.815	15	LEGHORN	0.000

Conclusions

The main results of this study shows a positive relationship between technical efficiency, intermodal traffic volume (more then 1 million tons), investment cost and the chosen performance index (IPI).

The variables related to the operational linkages with the Italian ports and the possibility of developing maritime traffic showed no particularly significance for the rail function and performance of the Italian interports.

Technical Efficiency has considerable relevance for the competitive performance over time.

The general Italian policy of intermodal road-rail transport planning, followed by a unique "national model" promoted with late-1980s legislation (Law 240/90), in few cases has given positive results and mainly in North Italy.