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1 Introduction

The airport business is increasingly becoming a platform activity. Airports de-

rive revenues from two different but interlinked sides: the so-called aeronautical

activities offered to airline companies (where the landing charges paid by airlines

represent the lion’s share), and non-aeronautical revenues that relate to all com-

mercial activities taking place inside the airport terminals, such as shops, food

and beverage, car parking, etc. According to the management consulting firm

Arthur D. Little (2009), airports aim to achieve 50% of their revenues from non-

aeronautical sources, with retail representing the main source. In the five-year

period 2005-09, airport retail revenues grew by 14% per year driven mainly by

airports’ strategy to develop non-aeronautical revenues. The 50% revenue split

is confirmed by more recent industry reports (see, e.g., ACI, 2012; ATRS, 2013).

Airports have increased the floor space dedicated to duty-free shops signifi-

cantly. The Economist (2014) refers to airport shopping as the “sixth continent”

to highlight its importance for retailers. In 2008, the retail project at Beijing

Airport Terminal 3 was completed with the design of the star architect Norman

Foster and a staggering floor space of 1,000,000 m2. It was the largest airport

passenger terminal building in the world, soon to be surpassed by Dubai Inter-

national Airport’s Terminal 3 which has 1,700,000 m2 of floor space. It is clear,

however, that in order to do their shopping, passengers need to be attracted to

the airport first and this happens only when they fly. The decision whether to fly

is influenced by the fare charged by airlines, but it is also closely linked to other

issues. An important factor is the shopping activity that can be carried out at the

airports. According to a recent report by Mintel, 16% of German leisure travelers

anticipate airport shopping, while the percentage is 18% for British ones. These

are different from impulse buyers that simply cannot resist last minute purchase.

Asian-pacific international travelers are also committed shoppers (Mintel, 2013).

Clearly, various choices made by airports are relevant for the decision to fly.

Most directly, the landing fee (i.e., the charge imposed to airlines for the use of
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the airport infrastructure) is part of the airlines’ cost and, therefore, it affects

the level of demand for air services when passed through to passengers into final

flight fares. Landing fees can also have a sizeable external effect on the airport

retail activities by affecting the number of passengers making use of the airport

facilities. As a result, an increase in the landing fee may have a positive effect

on the aeronautical revenues but, at the same time, a countervailing negative

effect on commercial revenues due to the reduction in the number of passengers.

As airports often enjoy considerable market power with respect to airlines, these

landing fees are sometimes subject to regulation. Airports have recently claimed

for a recognition of the two-sided nature of their business to show the limited de-

gree of market power they enjoy in setting landing fees, which would justify lifting

any regulatory constraint on these charges (Charles River Associates, 2013).

In this paper, we propose a model to study the optimal pricing strategy of an

airport that operates a platform that can generate revenues both from traditional

aeronautical activities and from non-aviation (retail) activities. Should an airport

use its market power to ask for relatively high landing fees, even though this

may risk shrinking demand for commercial services? Should the airport allow

for several concessions for similar services (e.g., various competing coffee shops),

or should it instead limit within-airport competition, awarding only very few

concessions per type of service, thus enhancing the revenues that can be extracted

from firms bidding for the concessions? The answer must lie in unraveling the

extent to which a better customer experience at the airport terminal can, in turn,

enhance the demand for flight services.

Our model introduces three important and novel contributions to the exist-

ing literature on airports. First, we make explicit the one-way complementarity

between the demand for air travel and retail products. While this link is already

present in other models,1 its role has not been investigated in depth before. In

our setting, air services are bought by consumers as a primary product, while

retail services play the role of the secondary product, being demanded exclu-

1See Section 2 for a review of the literature.
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sively by those who consume the primary product. Second, we introduce a novel

feature that we call the degree of consumer foresight, that is, the extent to which

passengers anticipate, at the time of purchasing their flight, the retail consumer

surplus they will obtain when at the airport terminal. Third, our paper is also

the first to recognize the endogenous nature of the retail market structure at

the airport; the airport itself determines the market structure of the retail mar-

ket through different instruments, such as the number and the composition of

the concessions awarded, the type of contract used or the layout of the airport

premises.2

We build a model that derives the demand functions for air travel and retail

services, where the demand for air travel depends, to a varying degree, on the

expected surplus that the consumer anticipates to obtain from the consumption

of the retail good. Then we perform a two-stage equilibrium analysis. In the

first stage, the airport sets the landing fee and chooses the number of retailers

allowed to operate concessions in its terminals. In the second stage, retail firms

and airlines simultaneously choose their prices and quantities, respectively. To

analyze how consumer foresight affects the equilibrium outcome, we distinguish

along the analysis among perfectly myopic consumers, almost myopic consumers,

and forward looking consumers.

Our main findings can be summarized as follows. In the presence of perfectly

myopic consumers, the solution is simple: the airport chooses the minimum

possible number of retailers and a landing charge strictly lower than the standard

monopoly charge. This is because there is no reason to introduce any retail

competition: the maximum retail profits will be extracted, and this has no impact

2On the other hand, although the airport chooses the landing fee to be charged to airlines, it
has a limited capacity (sometimes no capacity at all) to determine the airline market structure.
In Europe, airports have no power to determine the airline market structure since the use of
slots is based on rules such us ‘grandfather rights’ (i.e., an operator which currently uses a slot
can retain the slot each period) or ‘use-it-or-lose-it’ rules (i.e., airlines must operate slots as
allocated by the coordinator at least 80% of the time during a season to retain historical rights
to the slots; see Gale and O’Brien (2013) for an analysis of the welfare effects of ”use-it-or-
lose-it” rules). In the US, airlines typically sign contracts with airport authorities to regulate
the access to the infrastructure and they do not need to own slots.
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on ex ante demand for flights, as consumers are myopic. As for landing fees, the

airport can exploit the complementarity between aeronautical and retail activities

by attracting more passengers with lower landing fees, as passengers will then

purchase a certain amount of retail goods at the airport’s terminal. In other

words, under consumer myopia the airport platform makes most money from

retail services, and less money (even zero, under some parameter configurations)

from landing fees.

This result changes as soon as one departs from the assumption of consumer

myopia. Looking at the extreme case of perfectly forward looking consumers, we

find that the relative importance of the two revenue sources is exactly reversed.

The airport chooses a very competitive retail sector and, because of the very

intense retail competition, does not derive profits from the retail sector. How-

ever, forward-looking consumers do anticipate the benefits they will receive from

purchases at the airport’s terminal, and therefore their demand for the comple-

mentary main product, flights, is expanded and the airport can charge much

higher landing fees to the airlines. When instead consumers are almost myopic,

the result depends on the degree of product differentiation in the retail sector.

When there is little differentiation, strong competition among retailers makes the

airport prefer the most concentrated retail structure, but it also raises the land-

ing fee (as compared to the case with perfectly myopic consumers) since some

retail consumer surplus is now anticipated by air travelers. When differentiation

is large, the airport instead prefers not to derive profits from aeronautical ser-

vices (thus setting landing fees to zero) and boost the expected consumer surplus

by awarding a certain number of concessions to additional retailers.

As illustrated above, the balance of the airport’s profits between aeronautical

and retail activities changes dramatically with the consumers’ degree of foresight.

In equilibrium, we find that the highest aggregate profits are always obtained

when consumers have perfect foresight. However, profits are not monotonic in

the degree of foresight, and we find conditions such that a small increase in

foresight decreases profits.
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While airports and their characteristics represent the motivation for the

model of platform pricing that we analyze, it is easy to think of other settings

to which the model could be applied, with suitable adaptations. In general

terms, we study pricing when a supplier offers a primary and a secondary good,

and where, in order to purchase the secondary good, the consumer must have

initially purchased the primary good. We have in mind a situation where the

primary good is more ‘salient’ in the initial purchasing decision, compared to

the secondary good’s consumption that can be decided after the initial purchase.

Saliency here corresponds to our degree of consumer foresight. In the case of

airports, the primary good is the (derived) demand for passengers, while the

secondary good is some retail activity at the terminal. Applications can be man-

ifold: people may go to shopping malls for a primary activity (e.g., going to a

movie theater) but may end up also purchasing a secondary good (a meal, or

some other type of shopping); hotels charge for rooms, but may also additionally

sell in-room services (telephone calls, laundry, meals) that are not necessarily

anticipated when booking a room; banks usually offer interests (i.e., a negative

price) on bank accounts, but set different charges for overdrafts or other banking

services that the consumer may not take fully into account when choosing the

bank; even mobile phones can be seen as platforms that sell a primary product

(a bundle of minutes for calls and text messages), but also supply secondary ser-

vices whose consumption (and costs) may not be perfectly anticipated by users

(such as international roaming charges, or downloads of certain applications).

In these examples, the degree of vertical integration and delegation varies (for

hotels or banks, for instance, most secondary goods are directly supplied by the

supplier of the primary product) but the question of market structure is still of

general interest. For shopping malls, the setting for the secondary product is

very close to ours: as with airports, the mall chooses the type of retailers, but

cannot determine directly the price of their goods. Also, mobile providers have to

decide whether to make their platform open (which possibly makes entry by app

providers easy, leading to competitively-priced secondary products) or closed (in
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which case the mobile platform would try to share the rents that could eventually

accrue to the app providers, for instance by proposing exclusivity fees). While

each setting would have its distinguishing features, our model is useful generally

to think about these other environments too.

The paper is organized as follows. In Section 2 we relate our paper to the

existing literature. In Section 3 we present the model and derive the demand

functions for air travel and for retail services. Then in Section 4 we perform

the equilibrium analysis, distinguishing between the cases of perfectly myopic

consumers, almost myopic consumers, and forward looking consumers. Finally,

Section 5 concludes. Proofs are provided in the Appendix.

2 Literature review

The two-sided platform nature of the airport business is often cited (Zhang and

Zhang, 1997; Starkie, 2001; Wright, 2004; Van Dender, 2007; Gillen, 2011; Gillen

and Mantin, 2012; Ivaldi et al., 2012 and 2015), although few formal treatments

exist.3 While our paper is the first to study an airport’s optimal pricing strategy

to both sides, including the optimal concentration of the retail business, there is

a large literature on airport pricing. Zhang and Zhang (2010) and Kratzsch and

Sieg (2011) study consumers that purchase both air and retail services. Czerny

(2006) is the first to consider that only passengers can buy commercial services

and they perfectly anticipate the surplus they derive from them. D’Alfonso et al.

(2013) provide a more elaborated model on the relationship between retail and air

travel demand, where the demand for retail services depends on the number of air

travelers. A common element in all these papers is the presence of three groups

of stake-holders (passengers, airlines, and airport), but no strategic behavior is

considered for retail firms. Another important difference of our contribution

with respect to the existing literature on airport pricing has to do with the

3The first papers to study two-sided markets are Caillaud and Jullien (2003), Armstrong
(2006), and Rochet and Tirole (2003 and 2006).
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aim of the paper. While the previous literature has traditionally adopted a

normative approach to discuss the effect of different types of airport regulation

in the presence of congestion, our purpose is to provide a broader positive analysis

of the effect of consumer foresight on platform pricing. To keep the model as

transparent as possible, we do not incorporate airport congestion.4

As compared to other platforms, airports have their own peculiarities derived

from the one-way complementarity between the demand for air services (primary

good) and retail services offered at the terminals (secondary good). In our model,

at the moment of purchasing the flight ticket, consumers may not correctly an-

ticipate the surplus they will obtain from the retail good once in the airport.

This imperfect anticipation may be the result of several phenomena. First, con-

sumers may suffer from myopia (to a varying degree) because the nature of their

utility function makes them (partly or fully) unable to take into account future

purchases when buying the primary good. This is in line with a number of

studies studying the issue of limited rationality in solving consumption problems

(Strolz, 1995; and Busse et al., 2013). Secondly, rational consumers purchasing

more than one product may not be fully informed on the terms prevailing in

all the markets (Lal and Matutes, 1994; Verboven, 1999; and Gans and King,

2000). Finally, before arriving at the airport terminal, consumers are assumed

not to know for certain (but simply to have an expectation) their preferences

for the retail good. This aims at capturing the fact that, at the time of buying

the flight ticket, a passenger does know exactly whether she will want, say, to

spend time in a restaurant for a meal or simply go to a bar for a coffee, as this

depends on contingencies that cannot be foreseen when booking the flight. This

feature of our model is also shared in other contexts. For instance, in behavioral

economics, there are papers where uninformed consumers do not know their ideal

taste ex ante and, thus, they are uncertain as to which product they will finally

buy. Therefore, they experience ex ante uncertainty in the price and match-

4The literature on congestion pricing focuses on the question of whether a hub operator
will internalize the congestion externality; see Daniel (1995), Brueckner (2002), Mayer and
Sinai (2003), and Rupp (2009).
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value dimension, and form reference-point distributions in these two dimensions

(Heidhues and Kőszegi, 2009; and Karle and Peitz, 2014).5

A large body of literature has studied markets where primary and secondary

goods are traded (or, with alternative definitions, markets with aftermarkets,

or markets for standard goods and add-ons). This same issue has been tackled

by Oi’s (1971) classic study of two-part pricing by a Disneyland monopolist,

where he concludes that the firm can extract completely the consumer surplus

with the fixed admission fee, while setting the price of rides at marginal cost.6

This result arises as consumers are assumed to have the same behavior with

respect to rides, so that there is no reason to introduce metering as a screening

device. Although we obtain a similar result as in Oi (1971) when consumers are

sufficiently forward-looking, this result breaks down completely as consumers

exhibit a certain degree of myopia, despite the fact that the ex post demand

is homogenous across consumers. Our model departs from this literature in

three ways. First, prices for the secondary good are not directly set by the

monopolist, but are determined by the strategic interaction between independent

retailers. The only way the airport has to affect retail prices is via the number of

concessions. Second, the surplus consumers derive from the secondary goods does

not depend only on their prices, like in Oi, but also on the number of varieties

(in our model, the number of concessions) and therefore on transportation costs.

Third, we study explicitly the role of consumer foresight, which is not part of

Oi’s analysis.

Some recent literature has looked at the problem of primary and secondary

products typically in oligopoly markets with different types of consumers.7 Two

5In a model of airline scheduling, Brueckner (2004) assumes that passengers, when pur-
chasing their flight tickets, do not know their preferred departure time and then they look at
airfares and their expected average schedule delay (which is decreasing with the airline’s flight
frequency). In the context of the health industry, this hypothesis of ex ante uncertainty is also
used by Gal-Or (1997 and 1999) where a consumer is asked to choose between two insurance
companies which have a direct relationship with two differentiated hospitals, and only after
getting ill she observes her preference parameter between the two hospitals.

6Czerny and Lindsey (2014) analyze a similar problem of a multiproduct monopolist selling
core and side goods to consumers buying the different types of goods simultaneously.

7See Klemperer (1995), Ellison (2005), and Gabaix and Laibson (2006).
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general findings in this literature should be recalled. The first one underlines

that the distortion on prices is larger the lower is the degree of demand com-

plementarity, the less able are the consumers to forecast future prices, and the

more different are the consumers’ types in the market. The second one points

out that the platform’s profitability is higher the less able are the consumers to

anticipate the net benefits they obtain from the secondary good (typically for

informational problems).

Finally, our problem shows similarities with the vast literature on shopping

malls (see Carter, 2009, for a survey). Part of this literature is concerned with the

instruments to internalize the externalities between the different outlets within

a shopping mall, and between the shopping mall and the neighboring activi-

ties/properties. The most commonly investigated instruments are the composi-

tion of the commercial outlets (Hagiu, 2009), the nature of the contracts between

the landlord and the commercial outlets (Miceli and Sirmans, 1995; Pashiman

and Gould, 1998), control rights over non-contractible decisions (Hagiu and

Wright, forthcoming), the allocation of space within the shopping mall (Brueck-

ner, 1993), and its geographical locations (Carter and Vandelland, 2006). Our

paper is also liked to the literature on platforms, which has also studied when

technological hubs should be proprietary or open (Economides and Katsamakas,

2006; and Boudreau, 2010), or when additional content should be given out for

free (Hagiu and Spulber, 2013). Our paper is more limited in scope in that, for

instance, we do not analyze the incentives to innovate in complementary prod-

ucts. However, we do share the view that retailing activities can be made more or

less competitive so that consumers can enjoy a varying degree of surplus, which

is an equivalent to making the platform more ‘open’ to complementary products.

The difference is that, in our basic setting, the consumer purchases only one re-

tail product ex post, and thus there is no obvious demand-expansion channel for

the platform, leading to more retailing activities because this eventually results

in customers purchasing more products. In our model, retailing activities can

affect ex ante consumer surplus only from expected retail prices.
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3 The model

An airport operates as a monopolist in providing both aeronautical services and

retail commercial services. Aeronautical services are sold to nA airline compa-

nies competing à la Cournot to supply passengers; airlines pay a per passenger

fee, denoted as ℓ (landing charge), to the airport for the use of the airport in-

frastructure. The airport also awards concessions to retailers that trade in the

airport commercial area; the airport chooses the number of retail concessions,

denoted as nR, and awards them by means of an auction. The nR retailers are

symmetrically located along a Salop circle of unit length and compete by setting

prices to customers.

Passengers derive their utility from the consumption of flights and retail

goods. Passengers decisions are made in a two-step process: first, they pur-

chase their flight tickets; second, they make their retail purchases once in the

airport. Hence, only passengers who fly may also buy the retail goods, so that

the retail market is a pure complement to the airline market (but not vice versa).

We consider a two-stage game model with the following sequence of actions.

In the first stage, the airport sets a uniform landing charge for airlines and

selects the number of retailers. In the second stage, airline companies compete

by choosing simultaneously and non-cooperatively their quantities, and retailers

simultaneously and non-cooperatively set their retail prices at the airport. Once

these decisions are made, passengers make their flight and retail purchases, and

payoffs are collected. We analyze a game of full information and use subgame

perfection as the equilibrium concept.

We stress the realism of the simultaneous setting of airline choices and retail

prices, since there is no evidence of either being stickier than the other. While

one might casually argue that retail prices can be changed more frequently than

airlines’ fares, there is also evidence from on-line flight booking and from sophis-

ticated revenue management techniques used by airlines (also thanks to the use

of “big data”) pointing in the opposite direction. Instead, landing fees change
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typically only once a year, so it is natural to model them as long-run choices, as

opposed to short-run airline and retail choices.

Air travel demand. Each passenger is characterized by a parameter, z, which

illustrates her travel benefit, i.e., the utility she derives from consuming the

(homogeneous) flight service. The utility of a potential passenger is given by

U(pA,pR; z, δ) = z + δCS (pR)− pA, (1)

where pA is the airfare and pR = (p1, p2, ..., pnR
) is the vector of prices set by

the nR vendors of the retail good; z is the benefit a passenger receives when

traveling, uniformly distributed over the support (−∞, 1], with unit density.8

Note that CS (pR) is the expected retail consumer surplus that the consumer

anticipates to derive from the consumption of the retail good (to be discussed

later). The parameter δ ∈ [0, 1] tells if and how much the consumer takes into

account the utility she derives from the consumption of the retail good when

making her flight purchase decision: if δ = 0, the consumer is perfectly myopic

and the flight is bought based only on the utility the consumer derives strictly

from it; while, if δ = 1, the consumer has perfect foresight and fully anticipates

the retail consumer surplus at the airport already when purchasing the flight.

Values of δ between 0 and 1 denote intermediate cases of foresight.

Each consumer purchases at most one flight ticket, as long as the net utility

is non-negative, i.e., U (·) > 0. Let z̃ be the flight utility parameter of the

consumer that is just indifferent between flying and not flying. In other words,

U (pA,pR; z̃, δ) = 0 so that

z̃(pA,pR; δ) ≡ pA − δCS (pR) . (2)

Since z is uniformly distributed below 1, then the aggregate demand for flights

8The distribution is unbounded from below simply in order to have an elastic demand for
airlines. This avoids having to introduce case distinctions when the passengers’ market could
be fully covered.
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(i.e., the number of passengers traveling from the airport) is

QA(pA,pR; δ) = 1− z̃(pA,pR; δ) = 1− pA + δCS (pR) , (3)

whenever this is positive.9

Retail market demand. The nR retailers sell an homogeneous good and are sym-

metrically distributed on a Salop circle of length 1, with nR > 2.10 Since access

to the retail market is only available to passengers, the mass of potential passen-

gers/consumers is equal to QA(pA,pR). All these consumers have a unit demand

for the retail good. Each consumer has a taste parameter for the (differentiated)

retail good, denoted by x, which is uniformly distributed over the support [0, 1]

and is taken to be their position along the unit circle.11

For a consumer located at x along the circle, retail utility when buying from

the nearby retail firm located in xi is given by u = v − pi − t | x − xi |. We

assume that v is always sufficiently high so that the market is fully served. As

9Instead of the representative consumer approach adopted in the analysis, we could have
considered an heterogeneous population characterized by a fraction η of perfectly foresighted
consumers and a fraction (1− η) of perfectly myopic consumers. Under this assumption, the
cut-off utility parameter in (2) would become pA−CS (pR) for perfectly foresighted consumers
and pA for the perfectly myopic ones. As a result, the aggregate demand for flights would
become QA(pA,pR; δ) = η [1− pA + CS (pR)] + (1− η) (1− pA) = 1 − pA + ηCS (pR). Note
that this expression is identical to (3) after interchanging δ by η (which can be reinterpreted as
the average degree of foresight). Therefore, as long as both types of consumers are served, this
approach would be equivalent to our representative consumer specification. The advantage of
our approach is to avoid having to look at the uninteresting extreme cases whereby only one
type of consumer is targeted.

10In the Salop model, it is standard to analyze the case with at least two firms. We could
easily allow for a retailer monopolist, but the solution for the monopoly price would be an-
alytically different from the one in case of 2 or more firms. Having nR > 2 avoids this case
distinction, which is not central for our analysis.

11We consider a retail market in which all retailers offer goods which are substitute to one
other. In reality, one may find many non-substitutable products at any airport terminals, like
food and clothing. A simple way to include this feature in our model would be to imagine
several Salop circles, each one for retailers selling goods which are substitute to one other but
not to goods offered by other retailers located on a different circle. In this case, we could
easily endogenize the number of non-competing varieties (i.e., the number of circles). This
extension would magnify the effect of the retail activities in our model. A more challenging
extension is one with consumers being budget constrained; this would possibly add an issue
of cross-substitutability among varieties (channeled through income effects) that is outside the
scope of our analysis.
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it will become clear at a later stage, this is always true when

v >
5

8
t, (4)

which is assumed hereafter.

Individual firm’s demand is derived in the standard way. Assume one of the

nR retailers is located at 0, and call it firm i. The symmetry of its rivals’ locations

implies that one of the nearby firms, say firm j, is located at 1/nR. The marginal

consumer between firm i and j, denoted by x̃ij, is found by equating the utility

derived from buying from either firm, resulting in

x̃ij =
1

2nR

+
pj − pi

2t
. (5)

Assuming symmetry in the prices set by all the rival firms to firm i, the market

share for firm i is given by xi (pi, pj) = 2 x̃ij and the demand for firm i becomes

Xi(pi, pj;pR) = xi (pi, pj)QA(pA,pR).

To save on notation, retailers’ costs are normalized to zero. Thus retailer i’s

profits are given by

πi = piXi(pi, pj;pR) = pi

(
1

nR

+
pj − pi

t

)
[1− pA + δCS (pR)] . (6)

The above expression makes it clear that a retailer’s profits depend on the number

of traveling passengers, which, in turn, depends on their expectation on the

consumer surplus they enjoy in the retail market.

When deciding whether or not to buy the flight ticket, consumers are not yet

aware of their location on the unit circle. In other words, a passenger does not

know in advance whether she will want, say, to spend time in a restaurant for

a meal or simply go to a bar for a coffee, as this depends on contingencies that

cannot be foreseen when booking the flight. Only on the day of the flight the

precise taste parameter (the location x in our model) will be revealed. Still, a

passenger may anticipate she will want either a coffee or a meal on the day she
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flies. Therefore, passengers are able only to form an expectation of the surplus

they will be able to enjoy in this market. Passengers’ priors consider that each

location along the Salop circle is equally likely.12 Hence, the value of the expected

surplus when one retailer charges pi and all other retailers charge symmetrically

pj (let pj denote the vector of these prices) can be expressed as follows

CS
(
pi,pj

)
= 2

∫ x̃ij

0

(v − pi − tx) dx

+ 2

∫ 1
nR

x̃ij

[
v − pj − t

(
1

nR

− x

)]
dx (7)

+
nR − 2

nR

(
v − pj −

t

4nR

)
.

The first term is the expected value of the consumer’s utility when he/she ends

up being located on the right-side (clockwise) of firm i and purchases from it;

this is multiplied by 2 to include the same expectation on the left-side of firm

i. The second term is the expected value of the consumer’s utility when he/she

purchases from the first retailer j on the right of firm i (hence at a distance

1
nR

− x away from j); this is again multiplied by 2 for the same argument. The

last term represents the expected utility from purchasing with the remaining

nR − 2 symmetric firms.

Using (5), the expected retail consumer surplus in (7) becomes

CS
(
pi,pj

)
= v − pj −

t

4nR

+
pj − pi
nR

+
(pj − pi)

2

2t
. (8)

This is the value that passengers may anticipate, according to their degree of

foresight, δ, when booking a ticket.

12An alternative approach would be to assume that consumers, at the time of buying their
flight ticket, know their location, but do not know the firms’ locations along the Salop circle.
The two approaches lead to identical expressions for the expected consumer surplus.
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4 Equilibrium analysis

In this Section, we first analyze the second-stage equilibrium in which retail-

ers and airlines choose their prices and quantities, respectively (Subsection 4.1).

Then we consider the first-stage equilibrium in which the airport chooses land-

ing charges and the number of retail concessions (Subsection 4.2). Finally, we

examine the implications of the equilibrium analysis in terms of airport’s profits

(Subsection 4.3).

4.1 Second-stage equilibrium

We solve for the second-stage equilibrium, when retail firms and airlines simul-

taneously choose their prices and quantities, respectively.

Retail market. We first analyze the problem faced by the retail firms. Each retail

firm chooses its price to maximize its profits given in (6), where CS (·) is as in

(8). Formally, retail firm i’s problem can be expressed as follows

max
pi

πi

(
pi,pj

)
= pi

(
1

nR

+
pj − pi

t

)
×

[
1− pA + δ

(
v − pj −

t

4nR

+
pj − pi
nR

+
(pj − pi)

2

2t

)]
. (9)

Then the following Proposition can be formulated.

Proposition 1. The optimal retail price is given by

pR(pA) =
tδ (4 + 3nR) + 4γn2

R −
√

16tδn2
R (tδ − γnR) + [tδ(4 + 3nR) + 4γn2

R]
2

8δn2
R

,

(10)

where γ ≡ 1− pA + vδ. When δ > 0, this optimal retail price is always below the

Salop equilibrium price, i.e.,

pR(pA)|δ>0 < pR(pA)|δ=0 =
t

nR

. (11)
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This Proposition characterizes the optimal retail price as a function of the

price prevailing in the airline market, pA. Notice that, in case of perfectly myopic

consumers (i.e., δ = 0), (10) reduces to pR = t/nR, the standard Salop symmetric

equilibrium price. In this limiting case, there is no interaction between the

airline and the retail markets: retail competition does not affect the airport’s

derived demand, since passengers do not anticipate any surplus from commercial

services. By contrast, when retailers face forward looking consumers (i.e., δ > 0),

they always have an incentive to set a price lower than in the case of myopic

consumers. Indeed, with forward looking consumers, a lower retail price increases

the number of travelers, which in turn positively affects the retailer’s profits.

The results in the Proposition put us now in the position to justify our para-

metric restriction (4). Since pR 6 t/nR and nR > 2, the restriction always

ensures that consumers enjoy a strictly positive surplus in the retail market (i.e.,

CS (pR) > 0).

Airline market. In the airline market, airlines compete by choosing simultane-

ously and non-cooperatively their quantities, denoted as qk for the generic k-th

airline.13 In line with the literature, aeronautical services are sold to airline com-

panies at a uniform fee per passenger, denoted as ℓ (landing charge).14 All other

costs are assumed to be linear, identical across airlines and, without further loss

of generality, normalized to zero. Airline k’s profits are

πk = [pA(qk, Q−k)− ℓ] qk, (12)

13We note that there is no consensus on the best modeling choice for airline competition.
Cournot behavior is typically taken as a proxy for competition with limited capacity together
with homogeneity. It is assumed, for instance, by Zhang and Zhang (2006) or Brueckner and
Proost (2010). Other studies have used Bertrand models of differentiated products to model
airline competition to shed light on specific questions such as frequent flier programs, airline
mergers and alliances, entry, hub premia, congestion pricing, etc. (e.g., Basso et al., 2009;
Ciliberto and Tamer, 2009; Goolsbee and Syverson, 2008; Berry and Jia, 2010; and Bilotkach
et al., 2013).

14This is employed, for instance, by Zhang and Zhang (2006), Czerny (2006 and 2013),
Zhang and Zhang (2010), Kratzsch and Sieg (2011), D’Alfonso et al. (2013), and Haskel et al.
(2013).
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where Q−k denotes the sum of quantities offered by the other nA−1 firms. Using

(12) and inverting (3), we can write the maximization problem for airline k as

follows

max
qk

πk = [1 + δCS (pR)− qk −Q−k − ℓ] qk. (13)

where we suppress, from now onwards, the vector notation in CS(·) due to the

symmetry of retail prices.

Differentiating with respect to qk and exploiting symmetry at equilibrium

(Q−k = (nA − 1)qk), we obtain the equilibrium quantity for an airline

qA(pR) =
1− ℓ+ δCS (pR)

nA + 1
. (14)

Notice that this is a standard Cournot equilibrium quantity for a linear demand

with nA competitors and marginal cost equal to ℓ (that is, 1−ℓ
nA+1

), plus a term

δCS (pR) that acts as a demand shifter and depends on the extent to which

consumer surplus from retail activities exists and is internalized by passengers

when booking tickets.15

Finally, the inverse demand function for flights is given by pA = 1− nAqA +

δCS (pR), where CS (pR) = v − pR − t
4nR

(which comes from (8) after applying

symmetry). Using (14), we finally obtain the optimal airfare

pA(pR) =
nAℓ+ 1

nA + 1
+ δ

v − pR − t
4nR

nA + 1
. (15)

As before, the first term is the standard equilibrium price in a Cournot model.

The second term is instead the consumer’s surplus in the retail market. The

higher is the expected surplus and the higher is the consumers’ foresight, the

greater is the outward shift of the demand curve and therefore the equilibrium

price.

Properties of second-stage equilibrium. Using (10) and (15), it is now possible to

15The first-order condition yields ∂πk/∂qk = 1 + δCS (pR)− 2qk −Q−k − ℓ. It is straight-
forward to verify that the second-order condition holds.
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solve for the second-stage equilibrium airfare and retail price. As the resulting

expressions for these second-stage equilibrium retail and airline prices are rather

cumbersome and not needed for the analysis that follows, we do not present

the explicit expressions here. Some useful comparative statics results are shown

instead in the following Proposition.

Proposition 2. In the second-stage, the equilibrium retail price varies as follows

with respect to the landing charge and the number of retailers:

∂pR
∂nR

∣∣∣∣
δ=0

< 0;
∂pR
∂nR

∣∣∣∣
δ>0

≶ 0;
∂pR
∂ℓ

∣∣∣∣
δ=0

= 0;
∂pR
∂ℓ

∣∣∣∣
δ>0

< 0.

In the standard Salop model, where the price is equal to t/nR, it is obvious

that the retail price pR decreases in the number of competing retailers with

myopic passengers. As we show in the proof, this feature typically carries over

also to the case of forward looking consumers, despite a countervailing force due

to the market expansion effect when consumers anticipate retail surplus. It is

only under particular circumstances that this intuitive result may be reversed. A

necessary, but not sufficient, condition to obtain the counterintuitive result that

the retail price increases with the number of retailers, is that δ is very large, nA

is very small and also v is very small.

As for the landing fee, it is interesting that the retail price decreases in the

landing fee for every δ > 0. An increase in ℓ causes directly an increase in the air-

fare, so that passengers reduce their demand both for flights and for commercial

services; as a consequence, retailers try to counteract this effect by decreasing

their retail prices.

4.2 First-stage equilibrium

In the first stage, the airport sets the landing fee and chooses the number of

retailers allowed to operate concessions in its terminals. We assume that the

concessions are awarded competitively by means, e.g., of a first-price sealed-bid

auction to many potential firms, all identical, bidding non-cooperatively for the
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concessions. This implies that the airport is able to fully extract any profits

deriving from the retail side. We can then write the airport’s profits as follows

Π(ℓ, nR) = nAqA(pR)(ℓ+ pR), (16)

where we assume no airport costs (which are irrelevant in our analysis on the

optimal choice of ℓ and nR). At an interior solution, the following first-order

conditions must hold

∂Π

∂ℓ
= qA

(
1 +

∂pR
∂ℓ

)
+

(
∂qA
∂ℓ

+
∂qA
∂pR

∂pR
∂ℓ

)
(ℓ+ pR) = 0, (17)

∂Π

∂nR

= qA
∂pR
∂nR

+

(
∂qA
∂nR

+
∂qA
∂pR

∂pR
∂nR

)
(ℓ+ pR) = 0, (18)

where qA =
1+δ

(
v−pR− t

4nR

)
−ℓ

nA+1
,∂qA
∂ℓ

= − 1
nA+1

, ∂qA
∂pR

= − δ
nA+1

, and ∂qA
∂nR

= δt
4(nA+1)n2

R
,

while ∂pR
∂ℓ

and ∂pR
∂nR

are as characterized in Proposition 2. The solution to this

maximization problem is complex in general, as the Hessian matrix of the profit

function is not negative definite everywhere, and we must additionally check

that ℓ > 0 and nR > 2. Still, we can go a considerable way by looking at ana-

lytical solutions in some important limiting cases, before resorting to numerical

solutions.

Perfectly myopic consumers (δ = 0). We start by looking at the limiting case of

perfectly myopic consumers, i.e., δ = 0. In this case, there is no interaction be-

tween airport and commercial services, and the cross effects ∂qA/∂pR, ∂qA/∂nR,

and ∂pR/∂ℓ all simplify to zero. When evaluated at the second-stage equilibrium,

the first-order conditions (17) and (18) reduce to

∂Π

∂ℓ
= 1− 2ℓ− t

nR

= 0, (19)

∂Π

∂nR

= − nAt (1− ℓ)

(nA + 1)n2
R

= 0. (20)

From inspection of (3), it is immediate to see that ℓ cannot exceed 1 when
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δ = 0, given that pA > ℓ. Hence, (20) is negative everywhere and the airport

will always choose to award a number of concessions resulting in the maximum

admissible concentration, which is nR = 2 under our model assumptions. An

interior solution for ℓ is instead possible, depending on the value of t. This is

formalized in the following Proposition.

Proposition 3. Let ℓ∗|δ=0 and n∗
R|δ=0 be the equilibrium landing fee and number

of retailers respectively, when consumers are perfectly myopic. Then

i) ℓ∗|δ=0 =


1− t

2

2
if t < 2,

0 if t > 2,

ii) n∗
R|δ=0 = 2.

Therefore, the airport chooses the minimum possible number of retailers and

a landing charge strictly lower than 1/2, the standard monopoly level in model

with linear demand and unit intercept. This result is easy to interpret. First,

with perfectly myopic passengers, retail profits are obviously maximized with

fewer retailers, and this does not backfire as passengers do not foresee the result-

ing higher retail price when booking their flights. Second, and precisely because

passengers are very lucrative to the airport once they are attracted there, the

airport has an incentive to set a landing charge which is lower than the standard

monopoly charge that an airport that cannot internalize the profits accruing

from retail activities would otherwise charge. This is because the airport can

exploit the complementarity between aeronautical and retail activities by at-

tracting more passengers that will purchase a certain amount of retail goods at

the airport’s terminals. If t is sufficiently high (that is, the only two retailers are

highly differentiated and compete very little against each other), the landing fee

can even be set at zero: the airport prefers in this case to make no profits from

airlines, but extract as much as possible from the retail side.

Almost myopic consumers (δ → 0). We now look at the case of almost my-

opic consumers. In other words, we investigate the effect on ℓ∗ and n∗
R of an

infinitesimal increase from 0 of the parameter δ. Our results are summarized in
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the following Proposition.

Proposition 4. Let ℓ∗|δ→0 and n∗
R|δ→0 be the equilibrium landing fee and number

of retailers when δ is positive but infinitesimally small. Let also t1 ≡ 8(1+δv)
4+5δ

and

t2 ≡ 4nA(1+δv)
δ(3+8nA)

. Then

i) ℓ∗|δ→0
∼=


1− t

nR

2
+ δ

8

(
4v − 5t

nR

)
if t 6 t1,

0 if t > t1,

ii) n∗
R|δ→0

∼=

 2 if t < t2,

5δtnA+
√

δtnA[25δtnA+48(nA+1)(1+δv)]

4nA(1+δv)
if t > t2.

The first point to note is that the optimal choices detailed in the Proposition

are approximated values since they are obtained using the first-order Taylor’s

expansions around δ = 0 of (17) and (18). Clearly, the accuracy of these approx-

imations increases the smaller is the value of δ. In the limiting case of δ = 0,

the optimal choices we find are indeed identical to ℓ∗|δ=0 and n∗
R|δ=0; this can be

seen immediately by substituting δ = 0 into ℓ∗|δ→0 and n∗
R|δ→0 and noting that,

when δ = 0, the threshold t1 equals 2 while t2 goes to infinity.

Proposition 4 illustrates that a very small degree of foresight can have a

significant impact on the airport’s optimization choices. When t is sufficiently

small, there is little differentiation and possibly too strong competition among

retailers, hence the airport still chooses the most concentrated retail market

structure. However, as the retail consumer surplus is now partly anticipated by

passengers, there is an upward demand shift for flights that induces the airport

to increase its landing fee above the the myopic landing fee (i.e., ℓ∗|δ=0). Hence,

ℓ∗|δ→0 is strictly greater than ℓ∗|δ=0 and this fee can also increase above the

standard monopoly level.

When instead t is high enough, the airport sets the landing fee to zero, as

in Proposition 3, and derives no profits from aeronautical services. But now,

in order to attract more passengers to retail services, it prefers to boost their

expected consumer surplus by awarding concessions to additional retailers, so

that n∗
R > 2. While this has a depressing effect on retail profits, the demand
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expansion effect of having additional passengers prevails.

Although in this paper we take the airline market structure as given, since

it is not the main focus of our attention, we observe from Proposition 4 that

nA does not have an impact on the landing fee with almost myopic consumers.

Instead, the higher is nA, the lower is nR (as long as t > t2): consumer surplus is

already boosted by intense competition among airlines and thus, ceteris paribus,

there is a reduced incentive to award additional concessions.

Forward looking consumers (δ ≫ 0). We finally consider the case of consumers

with foresight about the retail market when making flight purchases. We can

still find full analytical solutions when the consumer preference parameter δ is

large enough. When instead the parameter δ is not so large, the highly non linear

nature of the problem at hand prevents us from fully characterizing the optimal

airport’s choices analytically. We then resort to numerical methods to illustrate

that the solutions’ features highlighted for very low and very large values of δ

actually carry over also for intermediate values of δ. We start by stating the

following Proposition.

Proposition 5. Let ℓ∗|δ> 4
5
and n∗

R|δ> 4
5
be the equilibrium landing fee and number

of retailers respectively, when consumers are forward looking with δ > 4/5. Then

i) ℓ∗|δ> 4
5
= 1

2
(1 + δv),

ii) n∗
R|δ> 4

5
→ ∞.

The nature of the airport’s optimal solution now changes completely. When

δ is above the critical value of 4/5, the airport has an incentive to make the retail

market as fragmented as possible,16 in order to increase the surplus consumers

can obtain when purchasing the retail good at the airport. Consumer surplus

goes up not only because retail prices decrease down to marginal costs, but also

because consumers find more product varieties, thus reducing transportation

costs. As δ is high, this expected retail consumer surplus has a large effect on

16The limiting result n∗R → ∞ comes from the assumption that there are no fixed (e.g., set
up) costs for retail activities. If we allowed for some fixed costs, clearly n∗R would converge to
some finite value.
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the demand for flights. This goes up considerably, and the airport can increase its

profits by raising the landing fee above the monopoly value that it would charge

if it could not appropriate the retail profits. Notice that the airport derives zero

profits from awarding concessions (as no rents are obtained there), yet it is able

to charge a landing fee above 1/2 because of the demand expansion effect.

To illustrate the optimal airport choices also for values of δ between 0 and

4/5, for given combinations of the exogenous parameters nA and v, we find by

numerical methods the optimal values of ℓ and nR as a function of δ and t. These

results are illustrated in Figure 1, together with those obtained analytically and

already presented in the Propositions of this Section.17 Panel A of Figure 1 plots

the optimal number of retailers as a function of δ, for different values of t. We

observe that n∗
R is always equal to 2 (i.e., its minimum value) when δ is sufficiently

low, it then becomes an increasing function of δ for intermediate values of δ, and

it goes to infinity for δ > 4/5, irrespective of t. For values of δ below 4/5, the

optimal number of retailers is always (weakly) monotonically increasing in t: this

implies that the airport is prepared to allow for less concentrated retailers as long

as they do not compete too intensely against each other.

The optimal landing fee is illustrated in Panel B of Figure 1, again as a

function of δ, and for different values of t. When δ > 4/5, the optimal landing

fee, fully characterized in Proposition 5, is shown in the Figure to be identical

for all values of t and increasing in δ. Below this threshold level of δ, the optimal

landing fee depends on the parameter t. In particular, when t is sufficiently

low, ℓ∗ is always strictly positive and also strictly increasing with δ. This is

because, for low values of t, retail competition is very strong even if the airport

awards the minimum possible number of concessions: the airport cannot extract

high rents from the retail side, and relies mostly on aeronautical services to

make money, via sufficiently high landing fees. Instead, for higher values of t,

17The numerical analysis is primarily meant to illustrate the smoothness and monotonicity
of our results for the range of δ for which we cannot solve the problem analytically and is
therefore not affected by the choice of the exact values of the exogenous parameters of the
model. The computer routine used in the analysis and the numerical values of the optimal
airport’s choices are available from the authors upon request.
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Panel A Panel B

Figure 1: Optimal number of retailers (panel A) and landing fee (panel B) for
t = 1, t = 3, t = 10, and t = 15 (when v = 10 and nA = 5).

the relative importance of the two sources of revenues is reversed: we can even

observe ℓ∗ = 0 when δ is intermediate (and then it becomes increasing in δ).

Retail competition is now not very intense, and high rents can be extracted from

the retail sector. The airport can therefore afford making little (even 0) money

from the aeronautical sector and concentrate on the optimal retail structure,

which can include more than 2 retailers when this boosts the ex ante demand

for traveling. For the entire range of δ, the optimal landing fee is (weakly)

monotonically decreasing in t. We note again that the landing fee can in many

instances be set above 1/2 (the standard monopoly level), in particular when δ

is large or when t is small.

Our results can be reinterpreted along the lines of the literature on two-part

tariffs and, in particular, with reference to Oi’s (1971) classic study of a Disney-

land monopolist. We obtain a result similar to Oi’s, in that “secondary” goods

are priced at marginal cost, when passengers are sufficiently forward-looking:

only then indeed the number of retailers goes to infinity, so that retail prices ap-

proaches retail marginal cost (0 in our model), and there are no transportation

costs, so that ex post consumer surplus is maximized.18 However, this result

18In our model, consumer surplus cannot be fully extracted by the ex ante fixed fee of a
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breaks down completely as consumers exhibit a certain degree of myopia.

4.3 Airport’s profits

The airport’s choices described in the previous Sections are those which generate

the highest airport’s profits. It is of interest to discuss how these profits vary in

relation to the consumer degree of foresight. In doing so, we not only look at

the relationship between δ and the airport’s aggregate profits, but also distin-

guish between the effect of δ on the relative profits from retail and aeronautical

activities.

The degree of consumer foresight is assumed to be exogenous in our model.

We note here, however, that it could be affected by the airport, for instance

with appropriate informative campaigns, as it is often observed now in several

airports.19 Actually, the fact that airports do advertise their retail facilities, is

already an indication that, in practice, δ cannot be zero, as otherwise there would

be no reason to inform (or manipulate information) about something that does

not affect travelling demand in case consumers are fully myopic.20 Hence a better

understanding of the relationship between the airport profits and the degree of

consumer foresight could not only inform the most appropriate airport’s choices

on landing fees and retail market structure, but also determine the incentive for

the airport in engaging in advertising campaigns on the retail activities available

on the airport site. Our results on the role of δ on the firm’s gross profits are

presented in the following Proposition.

two-part tariff, as in Oi, since the airport does not sell directly the “primary” good, but sets
instead a linear landing fee for the derived demand from passengers.

19In other non-airport settings, we often observe the symmetric problem of firms having to
strategically determine the extent to which they should shroud the product/add-on attributes
or prices: see, e.g., Gabaix and Laibson (2006) and Wenzel (2014), and the normative analysis
of Kosfeld and Schüwer (2014).

20For instance, on the website of Dubai airport, you may read: “Dubai is a shopper’s
paradise. And so is our airport. From local delicacies to luxury brands, travel essentials to
tempting indulgences, we offer something for everyone” (www.dubaiairports.ae). Also, think
of the iconic shopping slogan “See Buy Fly” created by Amsterdam Schipol Airport, one of
Europe’s largest hubs; see www.schiphol.nl.
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Proposition 6. Let π∗, π∗
R, and π∗

A be the airport’s equilibrium profits from

all, retail, and aeronautical activities, respectively, with π∗ = π∗
R + π∗

A. Let also

v1 ≡ t(9tnA+10nA+4t)
8nA(t+2)

and v2 ≡ t(7nA+2)
8nA

. Then

i) Aggregate profits: π∗ is highest when δ = 1. Also, ∂π∗

∂δ

∣∣
δ=0

> 0 if and only if

v > v1 when t < 2 and v > v2 when t > 2;

ii) Retail profits: π∗
R|δ=0 > 0 and π∗

R|δ≥ 4
5
= 0. Also,

∂π∗
R

∂δ

∣∣
δ=0

> 0 if and only if

v > v2;

iii) Aeronautical profits: π∗
A|δ=0 > 0 if and only if t < 2. Also,

∂π∗
A

∂δ

∣∣
δ=0

> 0 for

any v.

The Proposition shows the effect of the degree of consumer foresight on the

profits the airport obtains from the different components of its business. These

effects are characterized analytically for δ equal or around 0, and for δ equal or

above 4/5. For intermediate values of δ, as in the previous Section, we resort to

numerical simulations. Both types of results are jointly illustrated in Figure 2,

where we use the same parameter values as in Figure 1.

Aggregate profits. The highest aggregate profits are always obtained when δ is

equal 1, i.e., when consumers have perfect foresight. While for wide parameter

ranges it turns out that profits increase with δ, this is not, however, a general

result. In other words, while aggregate profits are always at their maximal value

when δ is at its highest value, profits may locally decrease as δ goes up. This

occurs for δ around 0 when v is sufficiently small relatively to the other model’s

parameters (or, equivalently, when t is sufficiently large relatively to the other

model’s parameters), as illustrated by the solid line in Panel D of Figure 2 (since

this depends primarily on the features of the retail market, more insights are

provided below in the analysis of retail profits).

Notice that the degree of product differentiation t plays a role to determine

the relevance of the two sources of profits when δ is small or moderate, but it

does not affect the level of aggregate profits when δ is high enough. To see this,

start with small or moderate values of δ. In Panel A, for instance, there is little
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differentiation among retailers: the retail sector is concentrated, aeronautical

profits are always positive for any δ (since the landing fee is always positive),

and generally represent the biggest share of total profits. Moving to Panels

B-C-D, as retail differentiation increases, the airport awards more concessions

and we observe an increased importance of retail profits relative to aeronautical

profits for intermediate values of δ. Finally, as illustrated in Proposition 5, when

δ > 4/5 the retail sector is always maximally fragmented, no profits are made

from retail activities and t is therefore irrelevant for the level of total profits.

We now separately discuss the interaction of δ with the retail and aeronautical

profits.

Retail profits. Retail profits are shown by the dashed lines in Figure 2; these are

always strictly positive when consumers are perfectly myopic (since the airport

chooses the most concentrated retail market) and are instead equal to zero when

δ is sufficiently high (since the airport prefers the most dispersed retail market).

The local effect of a change in the degree of consumer foresight is not uniquely

determined. It is only when v is sufficiently large that a small increase in δ from

0 has a positive effect on retail profits (see Panels A-B-C). Instead, when v is

sufficiently small (or, equivalently, when t is large), a local increase in δ from

0 reduces the airport retail profits (see Panel D). While a small increase of δ

pushes up the demand for flights and, therefore, the number of retail customers,

it also induces the airport to increase the number of concessions, as illustrated in

Proposition 4. This, in turn, increases the competitiveness of the retail activities

and depresses its profits. As it can be observed from (9), the demand expansion

effect is proportional to v: when v is relatively small, so is the demand expansion

effect, which is then outplayed by the opposite effect due to the increasing number

of concessions.

Aeronautical profits. The dotted lines in Figure 2 illustrate the aeronautical

profits. At δ = 0, as formalized in Proposition 3, the landing fee is set above cost

only when t < 2 (see Panel A), and aeronautical profits are therefore positive.
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Panel A: t = 1 Panel B: t = 3

Panel C: t = 10 Panel D: t = 15

Figure 2: Equilibrium profits (when v = 10 and nA = 5).

Elsewhere, the landing fee is set equal to cost and the airport makes no money

from the aeronautical business (see Panels B-C-D). A similar pattern is observed

for higher values of δ: aeronautical profits are equal to zero when consumers

are sufficiently myopic and t is large enough, while, in all other cases, they are

positive and increase as consumer foresight also increases.

Although our analysis has a limited nature due to the exclusions of the cost of

advertising campaigns, our results have some interesting implications. First, they

allow us to draw some lessons as to the most profitable activities in relation to

28



the consumer’s degree of foresight. Given the optimal pricing policies described

in Section 4.2, a larger degree of consumer foresight has, in most cases, a posi-

tive effect on aeronautical profits and a negative effect on retail profits. When

consumers are sufficiently myopic, the airport optimally charges a low landing

fee to attract consumers to the airport and, by choosing a concentrated retail

market, derives most of its profits from the retail activities. As δ becomes larger,

the retail market becomes a better instrument to induce consumers to purchase

a flight ticket: the number of concessions awarded increases and consumers ap-

propriate a larger share of the surplus created in the retail activities. This leads

to an increase in passengers, which benefits the airport as it can charge higher

landing fees and derive most, if not all, of its profits from the aeronautical side

alone.

Second, our results illustrate that small informative campaigns (to increase

δ) may be counterproductive when the consumer foresight is very low and, im-

portantly, the retail market is able to generate little profits because of the low

consumers’ willingness to spend. Yet, more ambitious (and costly) informative

campaigns may actually be very profitable. Of course, since we did not model

the cost side of advertising campaigns and how they relate to consumer foresight,

we did not seek to characterize the optimal level of informative advertising.21 We

do however make the point that it might be in the airport’s interest to increase

the degree of awareness of travellers about their retail experience while at the

airport.

4.4 A testable hypothesis

Our model is theoretical and is meant to provide a framework to analyze optimal

airport behavior, not to conduct empirical estimations. Yet, our model yields

some testable predictions that can give confidence to our approach in case they

21An interior solution to this optimal level of advertising could be granted by an increas-
ing and sufficiently convex advertising cost, and would be dependent on the cost function
parameters.
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are confirmed. More precisely, a prediction that comes directly from our propo-

sitions is that there should be a negative relationship between the share of retail

revenues (π∗
R) and the magnitude of the landing fees (ℓ∗). This negative relation-

ship can be observed by plotting, for a given value of δ, the optimal landing fee

reported in Figure 1 (Panel B) and the corresponding share of retail profits that

can be obtained from Figure 2 (all Panels). The result of this exercise is shown in

Figure 3 (Panel A).22 Notice that a negative relationship is not obvious, as we are

referring to equilibrium values. The rationale behind this finding is that a more

fragmented retail market structure (implying lower retail prices) depresses retail

profits but allows the airport to increase landing fees, which boosts aeronautical

profits.

The negative link between landing fees and the share of retail revenues pre-

dicted by our theoretical model is directly testable. With no intention to embark

on a thorough empirical test, we are nevertheless able to make a first step in this

direction by using data from the “2014 ATRS Global Airport Performance Bench-

marking Project”. We gather data on the share of non-aeronautical revenues and

on the Cost for Enplaned Passenger (CPE) for 77 US airports.23 The CPE is

a standard measure of the per-passenger aeronautical charge and is computed

as the ratio of the average cost to an airline for basic airport charges (airport

terminal rent and landing fees) over the number of departing passengers.24

A scatter plot of these data is provided in Figure 3 (Panel B). It shows an

unequivocal negative relationship between the two variables, which is further

confirmed by fitting the data with a semi-logarithmic trend line (also shown in

22We do not report the values for t = 15, since they are almost identical to those for t = 10.
23Data refer to 2012 and are available at http://www.atrsworld.org/publications.html. It

should also be noted that the type of airline lease agreement employed by US airports can
have an effect on actual landing fees, something that should be taken care of in a proper
econometric analysis. This effect should be lower in airports using residual agreements (akin
to the European single-till) like ORD, DFW or SFO, whereas it should be higher in airports
using compensatory agreements (akin to the European dual-till) like BOS, IAH or JFK (see
Richardson et al., 2014, for an analysis of US airline lease agreements).

24In a similar spirit, Ivaldi et al. (2015) and Bilotkach et al. (2012) compute aeronautical
charges in the US market as the ratio of aeronautical revenue over the number of aircraft
movements.
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Panel A: model’s predictions Panel B: actual data from US airports

Figure 3: The relationship between the share of retail profits and the landing
fee.

the plot).25

5 Concluding remarks and policy implications

Revenue at airports comes from two sources: aeronautical and retail activities.

When airports aim to earn 50% of their revenues from retailing, there is a need

to understand better the implications of consumer behavior for airports’ business

models. This paper provides a novel framework to think about this problem. We

argue that the relative importance of each one of them depends on the degree

of consumer foresight about the ex post retail surplus when purchasing a flight

ticket. We identify a clear trade-off between the retail market structure and the

landing fee, depending on the degree of consumer foresight. When consumers

are myopic, the airport awards very few retail concessions that turn out to be

very lucrative, while landing fees are kept low to lure passengers in the airport

terminal. As consumer foresight increases, the optimal retail structure becomes

more fragmented while the landing fee increases, until the airport optimally

25We tested various functional forms for the trend line and found that the semi-logarithmic
form is the best specification; the equation of the fitted trendline is πR = 83.89 −
14.79 ln(CPE), with coefficients significant at the 99% confidence level and R2 = 0.45.
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decides to earn money only from aeronautical services.

While airports represent the motivation for our analysis, we have argued that

our model of platform pricing could be applied (with suitable adaptations) to

other settings where a supplier offers a primary and a secondary good. We pro-

vided the example of shopping malls, hotel rooms, banking services and mobile

phone operators. Albeit to a different degree, the questions of consumer foresight

and (secondary good) market structure are present in all these examples.

Although the analysis undertaken in this paper adopts a positive perspective,

some normative implications can be directly derived. Given that there are no

set-up costs associated to retail activities and airlines compete imperfectly (in the

absence of congestion), the first-best solution would require the most fragmented

market structure on the retail side and the lowest possible landing fee (equal to

zero) on the aeronautical side to minimize the effect of airlines’ market power.

In addition, a more thorough first-best analysis would require to take a stance

with respect to the socially-optimal degree of consumer foresight, a matter that

is difficult to ascertain from first principles.

Therefore, comparing private and public incentives, we conclude the follow-

ing. As consumers’ foresight increases, the airport moves towards a socially-

optimal fragmented market structure on the retail side, but this occurs at the

expense of an inefficiently high landing fee. Conversely, higher values of con-

sumers’ myopia are associated with a more-efficient landing fee together with an

inefficiently concentrated market structure in the retail sector.

Although we have dealt with an unregulated platform, some regulatory im-

plications can be derived from our results. In the presence of perfectly myopic

consumers, the airport’s incentive to reduce the landing fee is well aligned with

the one of a benevolent regulator with the same degree of myopia and, therefore,

airport regulation should be soft (or even non-existent). In this particular case,

our model provides some support for the recent airport claims in favor of a dereg-

ulation of charges on the basis of the two-sided nature of the airport business.

However, in the presence of forward looking consumers, the landing fee may even
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exceed the monopoly price and, therefore, airport regulation of landing fees may

be socially beneficial.

While our model illustrates that a single till regulation - where both aero-

nautical and retail activities are taken into account when setting the regulated

landing fees - seems more appropriate than a dual till regulation, given the dual

source of airport revenues (both aeronautical and commercial), it also highlights

that current airport regulation is necessarily imperfect given that it is one-sided

since it only focuses on airlines’ landing fees. In fact, our analysis shows that the

retail market structure is as important and may be inefficiently chosen. There-

fore, a more comprehensive view of the airport business as a platform, taking

into account its two-sided nature and the decisions regarding the retail market

structure, could be welfare enhancing.
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Appendix

In this Appendix, we provide the proofs of all Propositions.

Proof of Proposition 1. Imposing symmetry (i.e., pi = pj = pR), the first-order

condition of retailer i’s problem (9) is

∂πi
∂pi

=
tnR [4(1− pA + δv)− 3δpR]− 4n2RpR (1− pA − δpR + δv)− t (4pR + t)

4tn2R
= 0.

(A-1)
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Figure A-1: The first-order condition of retailer i’s maximization problem

First, we establish the optimal retail price in (10). Solving (A-1) with respect to

pR and using γ, we obtain two solutions

p′R, p
′′
R =

δt (4 + 3nR) + 4γn2R ±
√

16δtn2R (δt− γnR) +
[
δt(4 + 3nR) + 4γn2R

]2
8δn2R

.

(A-2)

To select the correct solution, first rewrite the first-order condition (A-1) as follows

4δn2Rp
2
R︸ ︷︷ ︸

Q(pR)

= −δt (4vnR − t)− 4tnR (1− pA) +
[
4n2R (1− pA) + 4δt+ 3δtnR + 4δvn2R

]
pR︸ ︷︷ ︸

L(pR)

.

(A-3)

Figure A-1 illustrates that (A-3) is satisfied at the intersection between two func-

tions of pR, one quadratic, Q (pR), and one linear, L (pR). Note that L (pR) has a

negative intercept and that it is necessarily upward sloping. Notice also that, at the

smallest solution in Figure A-1, ∂Q(pR)
∂pR

< ∂L(pR)
∂pR

, while, by contrast, at the largest

solution in Figure A-1, ∂Q(pR)
∂pR

> ∂L(pR)
∂pR

.

The second-order condition of problem (9) is given by

δnR (6pR + t)− 4n2R (1− pA − δpR + δv)− 4δt < 0, (A-4)

which can be rewritten as

∂L (pR)

∂pR
− ∂Q (pR)

∂pR
> 2δnR [2 (t− nRpR) + 3pR] , (A-5)
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where

∂L (pR)

∂pR
= −δt (4vnR − t)− 4tnR (1− pA) +

[
4n2R (1− pA) + 4δt+ 3δtnR + 4δvn2R

]
(A-6)

and
∂Q (pR)

∂pR
= −8δn2RpR. (A-7)

Noting that the right-hand side of (A-5) satisfies 2δnR [2 (t− nRpR) + 3pR] > 0 because

pR < t
nR

as long as δ > 0, one can conclude that, for (A-5) to be satisfied, ∂L(pR)
∂pR

−
∂Q(pR)
∂pR

> 0 must hold, which establishes that the smallest solution in Figure A-1 is the

unique solution to the maximization problem (9).

We now turn to prove the last part of the Proposition, i.e., the inequality in (11).

First, note that (A-1) evaluated at δ = 0 yields ∂πi
∂pi

∣∣∣
δ=0

= (1−pA)(t−nRpR)
nRt = 0. Solving

with respect to pR gives pR(pA)|δ=0 =
t

nR
, which is the standard price in a Salop model.

Substituting pR(pA)|δ=0 =
t

nR
into (A-1) yields − tδ

n3
R
< 0, i.e., the first-order condition

is always negative at the Salop price. Therefore, pR(pA)|δ>0 will take a smaller value

than t
nR

for any δ > 0 and the inequality in (11) is proved. �

Proof of Proposition 2. Substituting the equilibrium airfare in (15) into the retail

price first-order condition in (A-1), we obtain

Ω ≡
nA
{
tnR [4(1− ℓ)− δ(3pR + 4v)]− 4n2RpR (1− δpR + δv − ℓ)− δt (4pR + t)

}
4tn2R (nA + 1)

− δpR
n2R (nA + 1)

= 0. (A-8)

Implicitly differentiating it, we obtain

∂pR
∂ℓ

= − ∂Ω/∂ℓ

∂Ω/∂pR

=
4nAnR (t− nRpR)

−nA
[
4n2R (1− 2δpR + δv − ℓ) + 3δtnR + 4δt

]
− 4δt

, (A-9)

∂pR
∂nR

= −∂Ω/∂nR
∂Ω/∂pR

=
t {−2nA [δ(t− 2vnR)− 2nR(1− ℓ)]− δpR [3nAnR + 8 (nA + 1)]}

nR
{
−nA

[
4n2R (1− 2δpR + δv − ℓ) + 3δtnR + 4δt

]
− 4δt

} . (A-10)

As to (A-9), the numerator is positive since Proposition 1 establishes that pR < t
nR
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when δ > 0. The denominator is negative because it is smaller than the second-order

condition in (A-4), which is negative after replacing the equilibrium airfare in (15).

As to (A-10), the denominator is again negative as in (A-4). The numerator is

decreasing in pR, hence it takes a lower bound at pR = t
nR

, in which case the numerator

simplifies to

− t

nR
{8tδ + nA[8tδ + 5nRtδ − 4n2R(1− ℓ+ vδ)]}. (A-11)

When this last expression is positive, then (A-10) is negative overall. From (A-11), a

sufficient condition is therefore that

v > −1− ℓ

δ
+

5t

4nR
+

2(1 + nA)t

nAn2R
. (A-12)

This condition is always satisfied when δ is low enough. From (4), recall also that

v > 5t
8 , which ensures that v is always greater than the second term on the RHS of

(A-12). Hence we expect that ∂pR
∂nR

< 0 in most cases. However, the third term of the

RHS of (A-12) is a countervailing effect that may change the sign of ∂pR
∂nR

: a necessary

(but still not sufficient) condition for ∂pR
∂nR

to be positive overall is that δ is large, nA

is small, and v is also small. �

Proof of Proposition 3. Directly in the text and therefore omitted. �

Proof of Proposition 4. Substituting the values of qA,
∂qA
∂ℓ , ∂qA

∂pR
, ∂qA
∂nR

, ∂pR
∂ℓ , and ∂pR

∂nR

into (17) and (18), we obtain

∂Π

∂ℓ
=

(
1− 2ℓ− t

nR

)
︸ ︷︷ ︸

A

+ 4nRnA (nRpR − t)Υ︸ ︷︷ ︸
B

+

[
t (4− δ)

4nR
+ δv − pR (1 + δ)

]
︸ ︷︷ ︸

C

= 0,

(A-13)

∂Π

∂nR
= − tnA (1− ℓ)

(nA + 1)n2R︸ ︷︷ ︸
D

+
tnA

(nA + 1)nR
Ψ︸ ︷︷ ︸

E

= 0, (A-14)

with Υ ≡
1−ℓ+δ

(
v−2pR−ℓ− t

4nR

)
nA[4n2

R(1−2δpR+δv−ℓ)+3δtnR+4δt]+4δt
and Ψ ≡ 4(1−ℓ)+δ(ℓ+pR)

4nR
+Υ {8δpR

+nA [2δ (4pR + t)− nR (4− 3δpR + 4δv − 4ℓ)]}.

From (19) and (20), we have that A = ∂Π
∂ℓ

∣∣
δ=0

and D = ∂Π
∂nR

∣∣∣
δ=0

. Notice also that

40



both A and D do not depend on δ, so that ∂A
∂δ = ∂D

∂δ = 0. Also, we observe that

∂B
∂δ

∣∣
δ→0

= 0, given that, for δ = 0, pR = t
nR

and the denominator of B takes on a

strictly positive value. Hence, ∂2Π
∂ℓ ∂δ

∣∣∣
δ=0

= ∂C
∂δ

∣∣
δ=0

and ∂2Π
∂nR ∂δ

∣∣∣
δ=0

= ∂E
∂δ

∣∣
δ=0

.

Since our analysis is limited to δ infinitesimally close to 0, it is legitimate to ap-

proximate the first-order conditions by their first order Taylor’s expansions. Hence,

(A-13) and (A-14) become

∂Π

∂ℓ
∼=
∂Π

∂ℓ

∣∣∣∣
δ=0

+ δ
∂2Π

∂ℓ ∂δ

∣∣∣∣
δ=0

= A+ δ
∂C

∂δ

∣∣∣∣
δ=0

= 1− 2ℓ− t

nR
+ δ

(
v − 5t

4nR

)
= 0, (A-15)

∂Π

∂nR
∼=

∂Π

∂nR

∣∣∣∣
δ=0

+ δ
∂2Π

∂nR ∂δ

∣∣∣∣
δ=0

= D + δ
∂E

∂δ

∣∣∣∣
δ=0

=
1

n2R

{
− tnA(1− ℓ)

(nA + 1)
+ δt

nA
[
n2R(5ℓ− 4v) + 2t(5nR + 6)

]
+ 12t

4n2R(nA + 1)

}
= 0. (A-16)

It is then immediate to see that (A-15) is negative when t > t̂1 ≡ 4nR(1+δv)
4+5δ . When

instead t 6 t̂1, solving (A-15) with respect to ℓ gives the expression for the optimal ℓ

given in the Proposition.

As to (A-16), solving it with respect to nR gives

n̂R =
5δtnA +

√
δtnA {25δtnA + [48(1 + δv − ℓ)− 60δℓ](nA + 1)}

nA[4(1 + δv)− ℓ(5δ + 4)]
, (A-17)

where there are also other solutions but none of them admissible. Notice that n̂R > 2

when t > t̂2 ≡ nA[4(1+δv)−ℓ(4−5δ)]
δ(3+8nA) .

It is easy to establish that t̂1 < t̂2, by simply checking for the sign of their difference

when δ goes to zero. Therefore, both in t̂2 and (A-17), it is possible to substitute ℓ = 0

to obtain t2 and the expression for the optimal nR given in the Proposition; similarly,

in t̂1, it is possible to substitute nR = 2 to obtain t1 given in the Proposition. �

Proof of Proposition 5. Let us initially assume nR → ∞. Then we can compute

explicitly the optimal landing fee, which is given by ℓ∗|nR→∞ = 1
2 (1 + δv), as indicated

in the Proposition. Then the rest of the proof consists in showing that indeed it is

optimal to set nR → ∞ for δ > 4/5.

Using (A-14), we compute ∂Π2

∂nR∂v : this takes a long expression, omitted here for
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the sake of brevity, which can be shown to be negative after substituting ℓ = ℓ∗|nR→∞.

Then, we can compute ∂Π
∂nR

∣∣∣
v→∞

(using de l’Hôpital Rule), which constitutes a lower

bound for ∂Π
∂nR

. More precisely, ∂Π
∂nR

∣∣∣
v→∞

= δtnA(5δ−4)
8n2

R(nA+1)
, which is non-negative for

δ > 4/5. Therefore, ∂Π
∂nR

> 0 for δ > 4/5, which directly implies n∗R → ∞. �

Proof of Proposition 6. From Proposition 3, π∗|δ=0 = nA(t+2)2

16(nA+1) when t < 2, and

π∗|δ=0 =
tnA

2(nA+1) when t > 2. Similarly, from Proposition 5, π∗|δ> 4
5
= nA(1+δv)2

4(nA+1) , which

is clearly increasing in δ. Comparing the two profits, it obtains that π∗|δ=0 > π∗|δ> 4
5

when v < t
2δ (when t < 2) or v <

√
2t−1
δ (when t > 2), where both limiting values

are below the smallest admissible value for v, which is 5t
8 , from (4). Hence the highest

profit that can be achieved is π∗|δ> 4
5
, in particular when δ = 1. Results on the absolute

values of π∗R and π∗A follow directly from Propositions 3 and 5.

As for the results for δ around 0, using the envelope theorem, we simply take the

derivative of the airport’s profits with respect to δ, plug into it the optimal values ℓ∗|δ=0

and n∗R|δ=0 and evaluate it at δ = 0. This gives ∂π∗

∂δ

∣∣
δ=0

= 8vnA(t+2)−t(9tnA+10nA+4t)
32(nA+1) ,

∂π∗
R

∂δ

∣∣∣
δ=0

= t[8vnA−t(7nA+2)]
16(nA+1) , and

∂π∗
A

∂δ

∣∣∣
δ=0

= nA[(8v−5t)(2−t)]
32(nA+1) when t < 2; and ∂π∗

∂δ

∣∣
δ=0

=

∂π∗
R

∂δ

∣∣∣
δ=0

= t[8vnA−t(7nA+2)]
16(nA+1) and

∂π∗
A

∂δ

∣∣∣
δ=0

= 0 when t > 2. Solving these expressions

with respect to v gives the critical values and the results in the Proposition. �
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Appendix B (for the use of referees only)

In this Appendix, we provide the basic outline of the computer routine we used to run
the numerical simulations that generate Figures 1 and 2 in the paper. We also provide
the actual values of the optimal landing charge, the optimal number of retailers, and
the equilibrium airport’s profits. The routine is written in Maple and is available from
the authors upon request.

We first solve the system of equations given by (10) and (15) to obtain the second-
stage equilibrium retail and aeronautical prices. These are given by

p∗R =
4nAn

2
Rϕ+ 3δtnAnR + 4δt(nA + 1)−

√
ψ

8δnAn2R
, (B-1)

p∗A =
2nAn

2
Rℓ(nA + 1)− 5δtnAnR − 4δt(nA + 1) +

√
ψ

8nAn2R(nA + 1)
, (B-2)

where ϕ ≡ 1+δv−ℓ and ψ ≡ 16ϕ2n2An
4
R−40δtϕn2An

3
R+δtnAn

2
R [25δtnA + 32ϕ(nA + 1)]+

24δ2t2nAnR(nA + 1) + 16δ2t2(1 + n2A + 2nA).
To perform our numerical simulations, first we set v = 10 and nA = 5. Then we

build a grid with combinations of the pair {nR, ℓ}, where nR and ℓ are allowed to
increase from 2 and 0, respectively, by increments of 0.0001. For given values of t and
δ, we first evaluate p∗A and p∗R as in (B-1) and (B-2) for each pair on the grid, and
check that all the relevant non-negativity constraints are met, namely for quantities in
the airline market and for the consumer surplus in the retail market. We then use the
calculated and admissible values of p∗A and p∗R to compute the airport’s profits (both
aggregated and disaggregated between aeronautical and retail). Finally, we select the
pair {ℓ, nR} yielding the highest aggregate profits. This procedure is repeated for all
the combinations of the selected values of t in the Figures (i.e., t equal 1, 3, 10, and
15) with the values of δ varying from 0 to 0.8, by increments of 0.02.

The results of our numerical simulations are provided in the following Tables; Table
1 reports the first-stage equilibrium landing fees and number of retailers, while Table
2 gives the airport’s profits (both aggregated and disaggregated).
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t = 1 t = 3 t = 10 t = 15
δ ℓ∗ n∗

R ℓ∗ n∗
R ℓ∗ n∗

R ℓ∗ n∗
R

0.00 0.2500 2.0000 0.0000 2.0000 0.0000 2.0000 0.0000 2.0000
0.02 0.3438 2.0000 0.0000 2.0000 0.0000 2.0000 0.0000 2.0000
0.04 0.4378 2.0000 0.0000 2.0000 0.0000 2.0000 0.0000 2.0000
0.06 0.5318 2.0000 0.0000 2.0000 0.0000 2.0000 0.0000 2.0000
0.08 0.6259 2.0000 0.0816 2.0000 0.0000 2.0000 0.0000 2.0000
0.10 0.7201 2.0000 0.1658 2.0000 0.0000 2.0000 0.0000 2.0000
0.12 0.8143 2.0000 0.2503 2.0000 0.0000 2.0000 0.0000 2.0000
0.14 0.9085 2.0000 0.3351 2.0000 0.0000 2.0000 0.0000 2.1168
0.16 1.0027 2.0000 0.4201 2.0000 0.0000 2.0000 0.0000 2.2216
0.18 1.0969 2.0000 0.5052 2.0000 0.0000 2.0000 0.0000 2.3119
0.20 1.1912 2.0000 0.5905 2.0000 0.0000 2.0000 0.0000 2.3906
0.22 1.2854 2.0000 0.6759 2.0000 0.0000 2.0000 0.0000 2.4598
0.24 1.3797 2.0000 0.7614 2.0000 0.0000 2.0000 0.0000 2.5210
0.26 1.4740 2.0000 0.8470 2.0000 0.0000 2.0000 0.0000 2.5756
0.28 1.5683 2.0000 0.9326 2.0000 0.0000 2.0000 0.0000 2.6246
0.30 1.6625 2.0000 1.0183 2.0000 0.0000 2.0000 0.0000 2.6688
0.32 1.7568 2.0000 1.1041 2.0000 0.0000 2.0000 0.0000 2.7089
0.34 1.8511 2.0000 1.1899 2.0000 0.0000 2.0000 0.0000 2.7454
0.36 1.9454 2.0000 1.2757 2.0000 0.0000 2.0000 0.0000 2.7788
0.38 2.0397 2.0000 1.3616 2.0000 0.0000 2.0000 0.0000 2.8095
0.40 2.1340 2.0000 1.4475 2.0000 0.0000 2.0000 0.0000 2.8377
0.42 2.2283 2.0000 1.5334 2.0000 0.0000 2.0000 0.0000 2.8638
0.44 2.3226 2.0000 1.6194 2.0000 0.0000 2.0000 0.0000 2.8880
0.46 2.4170 2.0000 1.7053 2.0000 0.0000 2.0000 0.0000 2.9105
0.48 2.5113 2.0000 1.7913 2.0000 0.0000 2.0141 0.0000 2.9315
0.50 2.6056 2.0000 1.8773 2.0000 0.0000 2.0265 0.0000 2.9511
0.52 2.6999 2.0000 1.9633 2.0000 0.0000 2.0400 0.0000 2.9694
0.54 2.7942 2.0000 2.0494 2.0000 0.0000 2.0491 0.0000 2.9866
0.56 2.8885 2.0000 2.1354 2.0000 0.0788 2.1000 0.0000 3.0028
0.58 2.9828 2.0000 2.2214 2.0000 0.2576 2.2084 0.0000 3.0180
0.60 3.0772 2.0000 2.3075 2.0000 0.4404 2.3287 0.0000 3.0324
0.62 3.1715 2.0000 2.3936 2.0000 0.6291 2.4644 0.0000 3.0460
0.64 3.2658 2.0000 2.4796 2.0000 0.8263 2.6206 0.1446 3.1772
0.66 3.3601 2.0000 2.5657 2.0000 1.0352 2.8047 0.3859 3.4070
0.68 3.4544 2.0000 2.6518 2.0000 1.2603 3.0287 0.6461 3.6856
0.70 3.5488 2.0000 2.7300 2.0000 1.5078 3.3123 0.9327 4.0369
0.72 3.6431 2.0000 2.8421 2.0361 1.7872 3.6914 1.2549 4.5000
0.74 3.7374 2.0000 3.0629 2.3341 2.1136 4.2400 1.6400 5.1838
0.75 3.7846 2.0000 3.1881 2.5464 2.3045 4.6330 1.8631 5.6643
0.76 3.8317 2.0000 3.3273 2.8340 2.5198 5.1617 2.1170 6.3139
0.77 3.8789 2.0000 3.4865 3.2567 2.7709 5.9363 2.4144 7.2644
0.78 3.9824 2.2917 3.6763 3.9671 3.0781 7.2400 2.7797 8.8595
0.79 4.1464 3.2208 3.9241 5.5780 3.4896 10.1814 3.2736 12.4679
0.80 4.5000 +∞ 4.5000 + ∞ 4.5000 + ∞ 4.5000 + ∞

Table 1: Equilibrium landing charge and number of retailers (when v = 10 and
nA = 5)
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t = 1 t = 3 t = 10 t = 15
δ π∗ π∗

A π∗
R π∗ π∗

A π∗
R π∗ π∗

A π∗
R π∗ π∗

A π∗
R

0.00 0.4688 0.1563 0.3125 1.2500 0.0000 1.2500 4.1667 0.0000 4.1667 6.2500 0.0000 6.2500
0.02 0.5908 0.2417 0.3491 1.4315 0.0000 1.4315 4.2642 0.0000 4.2642 5.8867 0.0000 5.8867
0.04 0.7277 0.3420 0.3857 1.6144 0.0000 1.6144 4.4158 0.0000 4.4158 5.7139 0.0000 5.7139
0.06 0.8793 0.4570 0.4223 1.7982 0.0000 1.7982 4.6037 0.0000 4.6037 5.6681 0.0000 5.6681
0.08 1.0457 0.5867 0.4589 1.9880 0.1070 1.8810 4.8167 0.0000 4.8167 5.7066 0.0000 5.7066
0.10 1.2268 0.7313 0.4956 2.1899 0.2286 1.9614 5.0473 0.0000 5.0473 5.8019 0.0000 5.8019
0.12 1.4227 0.8905 0.5322 2.4039 0.3619 2.0420 5.2907 0.0000 5.2907 5.9367 0.0000 5.9367
0.14 1.6333 1.0645 0.5689 2.6299 0.5071 2.1228 5.5438 0.0000 5.5438 6.1082 0.0000 6.1082
0.16 1.8587 1.2532 0.6055 2.8678 0.6641 2.2037 5.8041 0.0000 5.8041 6.3135 0.0000 6.3135
0.18 2.0989 1.4566 0.6422 3.1176 0.8326 2.2850 6.0701 0.0000 6.0701 6.5417 0.0000 6.5417
0.20 2.3537 1.6749 0.6789 3.3794 1.0130 2.3664 6.3406 0.0000 6.3406 6.7862 0.0000 6.7862
0.22 2.6234 1.9078 0.7156 3.6530 1.2051 2.4479 6.6148 0.0000 6.6148 7.0427 0.0000 7.0427
0.24 2.9077 2.1555 0.7523 3.9385 1.4089 2.5296 6.8918 0.0000 6.8918 7.3083 0.0000 7.3083
0.26 3.2068 2.4179 0.7889 4.2358 1.6245 2.6114 7.1713 0.0000 7.1713 7.5809 0.0000 7.5809
0.28 3.5207 2.6951 0.8256 4.5450 1.8517 2.6933 7.4527 0.0000 7.4527 7.8592 0.0000 7.8592
0.30 3.8493 2.9870 0.8623 4.8660 2.0906 2.7754 7.7359 0.0000 7.7359 8.1419 0.0000 8.1419
0.32 4.1927 3.2936 0.8990 5.1988 2.3413 2.8575 8.0206 0.0000 8.0206 8.4283 0.0000 8.4283
0.34 4.5508 3.6150 0.9357 5.5434 2.6037 2.9397 8.3064 0.0000 8.3064 8.7178 0.0000 8.7178
0.36 4.9236 3.9512 0.9724 5.8999 2.8778 3.0221 8.5934 0.0000 8.5934 9.0098 0.0000 9.0098
0.38 5.3112 4.3020 1.0091 6.2681 3.1637 3.1044 8.8812 0.0000 8.8812 9.3039 0.0000 9.3039
0.40 5.7135 4.6677 1.0458 6.6481 3.4612 3.1869 9.1699 0.0000 9.1699 9.5999 0.0000 9.5999
0.42 6.1306 5.0480 1.0825 7.0399 3.7704 3.2695 9.4593 0.0000 9.4593 9.8974 0.0000 9.8974
0.44 6.5624 5.4431 1.1192 7.4435 4.0915 3.3520 9.7493 0.0000 9.7493 10.1964 0.0000 10.1964
0.46 7.0089 5.8530 1.1559 7.8588 4.4241 3.4347 10.0399 0.0000 10.0399 10.4965 0.0000 10.4965
0.48 7.4702 6.2776 1.1926 8.2860 4.7685 3.5174 10.3312 0.0000 10.3312 10.7976 0.0000 10.7976
0.50 7.9463 6.7169 1.2293 8.7249 5.1247 3.6002 10.6233 0.0000 10.6233 11.0997 0.0000 11.0997
0.52 8.4371 7.1710 1.2660 9.1755 5.4925 3.6830 10.9161 0.0000 10.9161 11.4026 0.0000 11.4026
0.54 8.9426 7.6398 1.3028 9.6380 5.8722 3.7657 11.2096 0.0000 11.2096 11.7062 0.0000 11.7062
0.56 9.4628 8.1234 1.3395 10.1122 6.2635 3.8487 11.5056 0.2582 11.2474 12.0105 0.0000 12.0105
0.58 9.9979 8.6217 1.3762 10.5982 6.6665 3.9317 11.8187 0.8492 10.9696 12.3153 0.0000 12.3153
0.60 10.5476 9.1347 1.4129 11.0959 7.0813 4.0146 12.1519 1.4618 10.6901 12.6207 0.0000 12.6207
0.62 11.1121 9.6625 1.4496 11.6054 7.5079 4.0975 12.5051 2.1045 10.4006 12.9265 0.0000 12.9265
0.64 11.6914 10.2050 1.4863 12.1266 7.9460 4.1806 12.8788 2.7884 10.0904 13.2376 0.4979 12.7396
0.66 12.2853 10.7623 1.5230 12.6596 8.3960 4.2637 13.2737 3.5268 9.7469 13.5717 1.3365 12.2352
0.68 12.8941 11.3343 1.5597 13.2044 8.8577 4.3467 13.6910 4.3386 9.3524 13.9317 2.2532 11.6785
0.70 13.5175 11.9211 1.5964 13.7609 9.3216 4.4392 14.1325 5.2495 8.8830 14.3194 3.2791 11.0402
0.72 14.1557 12.5226 1.6332 14.3293 9.8767 4.4527 14.6006 6.2984 8.3022 14.7376 4.4535 10.2841
0.74 14.8087 13.1388 1.6699 14.9172 10.8386 4.0786 15.0993 7.5476 7.5517 15.1907 5.8828 9.3079
0.75 15.1407 13.4525 1.6882 15.2208 11.3859 3.8349 15.3618 8.2872 7.0746 15.4324 6.7229 8.7095
0.76 15.4764 13.7698 1.7066 15.5317 11.9943 3.5374 15.6344 9.1284 6.5061 15.6858 7.6880 7.9978
0.77 15.8158 14.0908 1.7249 15.8507 12.6877 3.1630 15.9187 10.1160 5.8027 15.9526 8.8286 7.1240
0.78 16.1597 14.6200 1.5396 16.1790 13.5083 2.6706 16.2167 11.3302 4.8866 16.2355 10.2406 5.9949
0.79 16.5116 15.3829 1.1287 16.5186 14.5628 1.9558 16.5322 12.9583 3.5739 16.5390 12.1600 4.3791
0.80 16.8750 16.8750 0.0000 16.8750 16.8750 0.0000 16.8750 16.8750 0.0000 16.8750 16.8750 0.0000

Table 2: Equilibrium aggregate, aeronautical and retail profits (when v = 10 and
nA = 5)
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