

XVII Riunione scientifica della SIET "New developments in transport economics: balancing economic growth, environmental sustainability and social inclusiveness" Milano, 29 giugno – 1 luglio 2015

SOCIO-ECONOMIC DETERMINANTS OF THE POTENTIAL DEMAND FOR CARSHARING.

Danielis R.*, Rotaris L. *DEAMS, Università di Trieste, danielis@units.it

- Research question
- Literature review
- The sample
- Results

Conclusions and future research

Research question: premises

- In Italy there is an increasing supply and demand of carsharing (CS)
 - CS is offered

- by private companies (Car2Go, EnJoy, Twist) in
 - Milan; Rome; Turin; Florence; Bologna; Genoa;
- and via municipal initiatives (Iniziativa Car Sharing) in many other cities
 - Brescia; Savona; Padua; Palermo; Parma; Venice
 - beside Milan; Rome; Turin; Florence; Bologna; Genoa;
- in Milan there are 6 providers
 - GuidaMi; E-vai; Car2Go; Enjoy; Twist; Share'nGo (EqSharing)
- In 2014, in Italy, CS users were 220.000 (80% in Milan)
 - +70% with respect to 2013

Research question

- Is there a potential demand for CS in FVG?
- What are the socio-economic determinants of this potential demand?

Literature review

Increasing literature on CS

- description of CS growth
- administrative and logistical issues of running a CS service
- characteristics of CS users and uses (travel purpose)
- impacts on car ownership, distance travelled and parking demand

Recent literature on CS demand estimation

- Schuster et al. (2005)
 - Monte Carlo simulation of the economic decision of owning or sharing a car based on major cost components and past car use
- Duncan (2010)
 - comparison of the estimated cost of using a CS and a private car
- Ciari et al. (2013 and 2014)
 - activity-based microsimulation
- Le Vine *et al.* (2014)
 - pooled data from the British National Travel Survey and a revealed and a stated-choice survey

The sample

- 1276 people
 - 694 women; 582 men
- Age:

- 49% 18 25; 43% 25 65 anni; 8% over 65.
- Province of residence:
 - GO 36%; TS 35%; UD 12%; PN 8%; 9% other regions.
- City size:
 - 33% TS; 5% PN; 3% UD; 33% < 20k inhabitants; 25 % 20k 50k.
- Income:
 - 27% <€2k, 49% €2k €4k, 14% >€4k, 10% missing.

Methodology and results

Interviews:

- telephone, face-to-face, social networks
- Data collected:
 - **1**. Would you use a CS service if available?
 - rating scale from 1 (undoubtedly no) to 5 (certainly yes)
 - 2. Assume that you don't have a car but a CS is available, how would you change your mobility pattern of commuting and non-commuting trips?

no data provided for CS service (fares, location, type of cars, type of service....)

N° of round trip journeys

Average distance per journey

Current COMMUTING trips per week

Car*	
Motor bike	
Bus	
Train	
Taxi *	
Walking	
Bicycle	
	Humothotical COMMUTINC trips portwoold
	Hypothetical COMMUTING trips per week
Carsharing*	
Carsharing* Motor bike	
Motor bike	
Motor bike Bus	
Motor bike Bus Train	

N° of round trip journeys

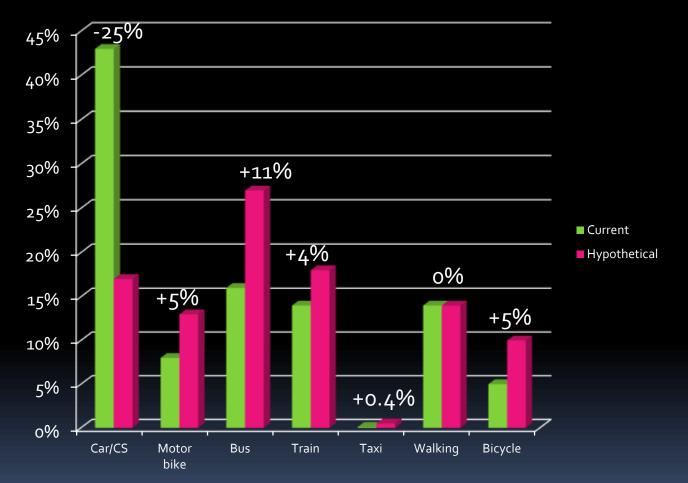
Average distance per journey

Current NON-COMMUTING trips per week

Car*	
Motor bike	
Bus	
Train	
Taxi *	
Walking	
Bicycle	
	Hypothetical NON-COMMUTING trips per week
Carsharing*	
Motor bike	
Bus	
Train	
Train Taxi *	

Stated willingness to use CS - rating scale 1-5 -

No (1-2): 66% Maybe (3): 18% Yes (4-5): 16%

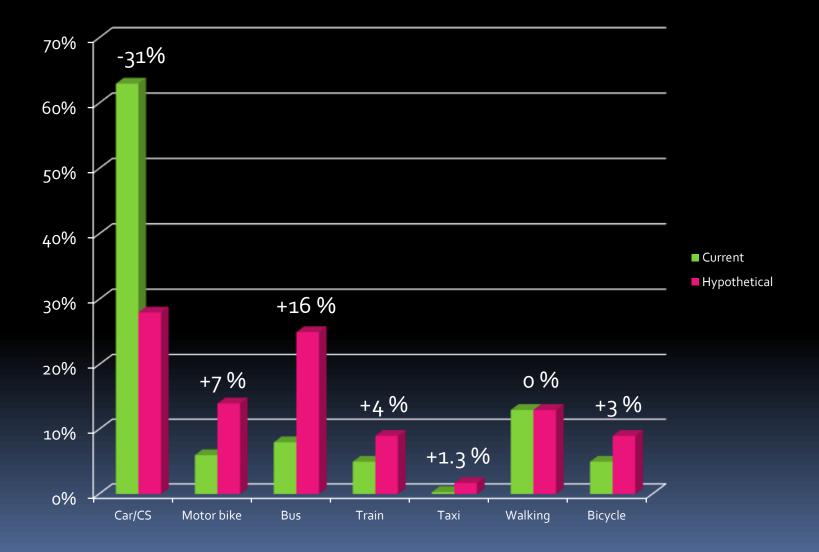

Ordered logit of Stated Willingness to use CS	Coeff.	Std.Err.	t-ratio	P-value
ONE	-1.16	0.29	-3.94	0.00
Age: 1 "18-25"; 2 "25-65"; 3 ">65" (ordinal)	-0.74	0.11	-6.46	0.00
City size: 20k-50k inhabitants (dummy)	-1.17	0.15	-8.03	0.00
Retired (dummy)	-1.43	0.42	-3.39	0.00
Unemployed (dummy)	2.14	0.55	3.87	0.00
N. Commuting trips: 0 "0"; 1 "1-10"; 2 "11-20"; 3				
">20"(ordinal)	0.35	0.09	3.89	0.00
Environmental awareness (ordinal, 1 to 5)	0.45	0.06	7.95	0.00
CS knowledge (ordinal , 1 to 5)	0.45	0.05	9.65	0.00
N. Non-commuting trips "11-20"	0.23	0.13	1.76	0.08
Mu(1)	1.49	0.06	24.36	0.00
Mu(2)	2.67	0.08	34.08	0.00
Μυ(3)	3.73	0.11	33.00	0.00
McFadden Pseudo R-squared	.11			
N. Obs.	1207			

Stated willingness to use CS - rating scale 1-5 -

Ordered logit	No 1	2	3	4	Yes 5
Age: 1 "18-25"; 2 "25-65"; 3 ">65" (ordinal)	0.16	-0.16	-0.08	-0.05	-0.03
City size: 20k-50k inhabitants (dummy)	0.27	-0.27	-0.22	-0.06	-0.04
Retired (dummy)	0.34	-0.11	-0.13	-0.10	-0.04
Unemployed (dummy)	-0.27	-0.21	0.06	0.18	0.25
N. Commuting trips: 0 "0"; 1 "1-10"; 2 "11-					
20"; 3 ">20"(ordinal)	-0.08	0.00	0.04	0.02	0.02
Environmental awareness (ordinal, 1 to 5)	-0.10	0.00	0.05	0.03	0.02
CS knowledge (ordinal , 1 to 5)	-0.10	0.00	0.05	0.03	0.02
n. viaggi tempo libero "11-20"	-0.05	0.00	0.02	0.02	0.01

- Willingness of using CS
 - decreases as:
 - age increases; city size is too small/large; status retired
 - increases as:
 - Status unemployed; n. commuting trips increases; environmental awareness and CS knowledge increases; large n. of non-commuting trips

Potential change of commuting mobility patterns


Socio-ec. determinants of potential demand for commuting

Logit willingness to use CS for at least 1 non				
commuting trip	Coeff.	Std.Err.	t-ratio	P-value
ONE	1.66	0.29	5.75	0.00
City size: 20k-50k inhabitants (dummy)	-0.77	0.20	-3.93	0.00
N. Commuting trips: 10-20 (dummy)	0.36	0.17	2.11	0.03
Commuting distance travelled: 1-25 (dummy)	-0.97	0.19	-5.08	0.00
CS knowledge (ordinal , 1 to 5)	0.12	0.06	2.04	0.04
Student (dummy)	0.40	0.16	2.47	0.01
N. Driver license (cardinal)	0.13	0.08	1.75	0.08
N. children < 18 age (cardinal)	0.20	0.10	2.02	0.04
McFadden Pseudo R-squared	.06			
N. Obs.	1125			

- Willingness of using CS for commuting trips
 - decreases as:

- medium city size; distance travelled < 25 km
- increases as:
 - n. commuting trips 10-20; CS knowledge; status student; n. of driver license; n. children < 18 age

Potential change of noncommuting mobility patterns

Socio-ec. determinants of potential demand for non-commuting

Logit willingness to use CS for at least 1 commuting				
trip	Coeff.	Std.Err.	t-ratio	P-value
ONE	2.70	0.47	5.70	0.00
Age 30-60 (dummy)	-0.59	0.20	-2.94	0.00
Age >60 (dummy)	-1.46	0.40	-3.62	0.00
City: TS (dummy)	0.10	0.07	1.54	0.12
Student (dummy)	0.60	0.37	1.63	0.10
Employed (dummy)	0.53	0.33	1.62	0.10
Environmental awareness (ordinal, 1 to 5)	0.21	0.06	3.33	0.00
N. non-commuting trips < 6 (dummy)	-0.29	0.15	-1.90	0.06
Distance travelled: 26-50 km (dummy)	0.67	0.20	3.29	0.00
Distance travelled: 51-100 km (dummy)	1.15	0.20	5.86	0.00
Distance travelled: 101-200 km (dummy)	1.19	0.21	5.62	0.00
Distance travelled > 200 km (dummy)	1.29	0.23	5.72	0.00
CS knowledge (ordinal , 1 to 5)	0.23	0.05	4.48	0.00
McFadden Pseudo R-squared	.12			
N. Obs.	1271			

Socio-ec. determinants of potential demand for noncommuting

- Willingness of using CS for non-commuting trips
 - decreases as:
 - age > 30; n. of trips too small (<6)
 - increases as:
 - city size large (TS); status: student or employed; environmental awareness and CS knowledge increases; distance travelled increases

Probability of using a CS

- Estimation of the annual generalized costs of the commuting and non-commuting trips at the individual level given:
 - the stated current mobility pattern

- the stated hypothetical mobility pattern if the car is not available while the CS is available
- the value of the monetary and non-monetary components of the generalized costs
- 10,000 simulation runs for each individual
- Comparison of the total mobility cost of scenario A (no CS) and B (no private auto)

Probability of using CS by person n = $\frac{\sum_{i=1}^{10000} x_i^n}{10000}$ for $\begin{cases} x_i^n = 1 & \text{if } GC^A > GC^B \\ x_i^n = 0 & \text{if } GC^A > GC^B \end{cases}$

Probability of using a CS

	Number of persons	%
Unwillingness to use CS both for		
commuting and non commuting trips	645	52
Probability less than 25%	307	24
Probability between 25% and 50%	250	20
Probability between 50% and 75%	51	4
Probability between 75% and 100%	23	2
Total	1276	100

Probability of using a CS in FVG

 From the sample to the population on the basis of city size and age

	Number of persons	%
Stated unwillingness to use CS	621,428	59.9
Probability less than 25%	198,742	19.2
Probability between 25% and 50%	171,979	16.6
Probability between 50% and 75%	36,709	3.5
Probability between 75% and 100%	8,311	0.8
Total	1,037,168	100

Socio-ec. determinants of probability of using CS

Ordered Logit 0 (no CS) – 4 (prob .CS [0.75-1])	Coeff.	Std.Err.	t-ratio	P-value
ONE	-1.55	0.28	-5.52	0.00
Age 30-60 (dummy)	-0.60	0.13	-4.76	0.00
Age >60 (dummy)	-2.02	0.32	-6.36	0.00
n. children	0.13	0.08	1.58	0.11
n. cars/driver license	0.74	0.21	3.52	0.00
City: TS (dummy)	0.26	0.12	2.20	0.03
Environmental awareness (ordinal, 1 to 5)	0.18	0.06	3.21	0.00
CS knowledge (ordinal , 1 to 5)	0.24	0.05	5.37	0.00
Mu(1)	1.19	0.06	20.03	0.00
Mu(2)	2.97	0.12	25.14	0.00
Mu(3)	4.20	0.21	20.03	0.00
McFadden Pseudo R-squared	.04			
N. Obs.	1175			

Socio-ec. determinants of probability of using CS

	No willingness	Estimated prob. Of using CS			
Ordered logit	of using CS	0-0.25	0.25 - 0.5	0.5 - 0.75	0.75-1
Age 30-60 (dummy)	0.15	-0.04	-0.08	-0.02	-0.01
Age >60 (dummy)	0.42	-0.19	-0.18	-0.04	-0.02
n. children	-0.03	0.01	0.02	0.00	0.00
n. cars/driver license	-0.18	0.05	0.10	0.03	0.01
City: TS (dummy)	-0.06	0.01	0.04	0.01	0.00
Environmental awareness					
(ordinal, 1 to 5)	-0.04	0.01	0.02	0.01	0.00
CS knowledge (ordinal , 1 to 5)	-0.06	0.01	0.03	0.01	0.00

- Willingness of using CS
 - decreases as:

- age increases
- increases as:
 - n. of children and of cars increases; large city size; environmental awareness and CS knowledge increases;

Internal validation

Ordered Logit 0 (no CS) – 4 (prob .CS [0.75-1])	Coeff.	Std.Err.	t-ratio	P-value
ONE	-2.06	0.29	-7.07	0.00
Age 30-60 (dummy)	-0.36	0.13	-2.74	0.01
Age >60 (dummy)	-1.59	0.32	-4.93	0.00
n. children	0.12	0.08	1.43	0.15
n. cars/driver license	0.96	0.21	4.50	0.00
City: TS (dummy)	0.11	0.12	0.91	0.36
Environmental awareness (ordinal, 1 to 5)	0.05	0.06	0.78	0.43
CS knowledge (ordinal , 1 to 5)	0.17	0.05	3.56	0.00
Stated willingness to use CS	0.44	0.05	8.88	0.00
Mu(1)	1.26	0.06	20.24	0.00
Mu(2)	3.09	0.12	25.76	0.00
Mu(3)	4.33	0.21	20.55	0.00
McFadden Pseudo R-squared	.07			
N. Obs.	1175			

Internal validation

	Νο	Estimated prob. Of using CS				
	willingness of					
Ordered logit	using CS	0-0.25	0.25 - 0.5	0.5 - 0.75	0.75-1	
Age 30-60 (dummy)	0.09	-0.03	-0.05	-0.01	0.00	
Age >60 (dummy)	0.35	-0.16	-0.15	-0.03	-0.01	
n. children	-0.03	0.01	0.02	0.00	0.00	
n. cars/driver license	-0.24	0.07	0.13	0.03	0.01	
City: TS (dummy)	-0.03	0.01	0.02	0.00	0.00	
Environmental awareness						
(ordinal, 1 to 5)	-0.01	0.00	0.01	0.00	0.00	
CS knowledge (ordinal , 1 to 5)	-0.04	0.01	0.02	0.01	0.00	
Stated willingness to use CS	-0.11	0.03	0.06	0.01	0.01	

- Willingness of using CS
 - decreases as:
 - age increases
 - increases as:
 - n. of children and of cars increases; large city size; environmental awareness and CS knowledge increases; Stated willingness using CS increases Results

Summary

	Rating CS use	CS Mobility Commuting	CS Mobility Non- commuting	Estimated probability CS use	
Age	Neg.		Neg.	Neg.	
Status	Retired Unemployed	Students	Students Employed		
N. Children		Pos.		Pos.	
N. Driver license		Pos.			
N. Car/driver license				Pos.	
Environmental awareness	Pos.		Pos.	Pos.	
CS Knowledge	Pos.	Pos.	Pos.	Pos.	
N. Trips	Pos.	10-20	Pos.		
Distance		>25km			
City size	Not Medium (20k-50k)	Not Medium (20k-50k)	Large	Large	

Conclusions

- Significant potential demand for CS in FVG: 4.3 % of the population
- Most important socio-economic factors:
 - Age; Status; n. driver license or cars; n. children
 - CS Knowledge; Environmental awareness;
 - type and number of trips; distance travelled
 - city size

- Demand is affected by:
 - Characteristics of the supply:
 - fees; free floating/point-to-point/return; operating zone; N. and type of vehicles
 - Transport policies:
 - Parking; Limited Traffic Zone; Dedicated lanes; Fee payed by the operator to the Municipality
 - Availability of complementary transport services (public transport)
 - Positive network externalities
 - Number and spatial distribution of residential, commercial, productive and tertiary activities

Future research

- Validation of the model using real demand data
- Analysis of mobility patter change assuming that both car and CS are available

Financial and economic sustainability of the service

- Analyze the cost structure of existing operators
- Simulate the profitability on the bases of
 - Service type
 - Vehicle type
 - Number of Vehicles
 - Transport policies
 - Number of customers
 - Distance travelled
 - Frequency

	unit	T(min, max, mean)
Private car		
Purchase cost	€	1000, 22000, 6100
N° of years before the market value goes to zero		1, 10, 5
Road tax		80, 360, 181
Insurance cost		250, 800, 515
Monetary value of the risk of uninsured theft or damage		0, 2500, 747
Ordinary and extraordinary maintenance cost		100, 1000, 322
WTP for avoiding the nuisance of maintaining and refuelling your car		0, 600, 202
Opportunity cost of the private garage		0, 1200, 213
Weekly parking costs		0, 10, 2
Time spent to search for a parking place		0, 15, 3
Monetary value of the pleasure of owning a car		0, 7000, 1742
WTA to give up the private car		100, 5000, 2267
Motorcycle		
Purchase cost	€	525, 1500, 1181
N° of years before the market value goes to zero		2, 5, 4
Road tax		10, 35, 20
Insurance cost		56, 270, 174
Monetary value of the risk of uninsured theft or damage		0, 100, 56
Ordinary and extraordinary maintenance cost		50, 150, 95
WTP for avoiding the nuisance of maintaining and refuelling the motorcycle		0, 50, 24
Monetary value of the pleasure of owning a motorcycle		20, 750, 530
WTA to give up the motorcycle		400, 700, 550
Bicycle		
Purchase cost	€	10, 50, 37
N° of years before the market value goes to zero		0, 2, 1
Monetary value of the pleasure of owning a bicycle		0, 10, 5
Monetary value of the nuisance of cycling		0, 0, 0
Walking		
Monetary value of the pleasure of walking		10, 500, 209
Monetary value of the nuisance of walking		0, 100, 49
Carsharing		
Membership fee		20, 100, 50
Minutes needed to reach a CS car		5, 10, 8
WTP for avoiding the nuisance of having to book a CS car		20, 100, 61
WTP for avoiding the risk of founding no CS car available when you need it	€	30, 300, 111
Monetary value of the satisfaction of being a CS user		0, 300, 114